CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS
[MAPREDUCE]

To Orchestrate a Job in a Cluster
A job comprises many a task
What could be so hard, you ask?
A job’s done, when every task wraps up
Deal you must, with every hiccup
Machines may slowdown or go bust
For no reason nor rhyme
Try to complete, you must
All tasks, at roughly the same time

Shrideep Pallickara
Computer Science
Colorado State University

Topics covered in this lecture

- Map Reduce
MapReduce

Materials Based On
JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified
Data Processing on Large Clusters. OSDI 2004: 137-150

MapReduce

- Programming model
- Associated implementation for
 - Processing & Generating large data sets
Programming model

- Computation takes a set of **input** key/value pairs
- Produces a set of **output** key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs
Mappers

- If map operations are **independent** of each other they can be performed in parallel
 - **Shared nothing**

- This is usually the case

MapReduce library

- **Groups** all intermediate values with the same intermediate key
- **Passes** them to the Reduce function
Reduce function

- Accepts intermediate key i and
 - Set of values for that key
- **Merge** these values together to get
 - Smaller set of values

Counting number of occurrences of each word in a large collection of documents

```java
map (String key, String value)
   //key: document name
   //value: document contents
   for each word w in value
      EmitIntermediate(w, "1")
```

Professor: SHRIDEEP PALICKARA

COLORADO STATE UNIVERSITY
Department: Computer Science Department

L12.9

L12.10
Counting number of occurrences of each word in a large collection of documents

```java
reduce (String key, Iterator values)
    //key: a word
    //value: a list of counts

    int result = 0;
    for each v in values
        result += parseInt(v);
    Emit(AsString(result));
```

Sums together all counts emitted for a particular word

MapReduce specification object contains

- Names of
 - Input
 - Output
- Tuning parameters
Map and reduce functions have associated types drawn from different domains

\[
\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)
\]

\[
\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)
\]

What’s passed to-and-from user-defined functions?

- Strings
- User code converts between
 - String
 - Appropriate types
EXAMPLES

Programs expressed as MapReduce computations:
Distributed Grep

- Map
 - Emit line if it matches specified pattern

- Reduce
 - Just copy intermediate data to the output
 - The reducer here is an identity function
Counts of URL access frequency

- **Map**
 - Process logs of web page requests
 - Output `<URL, 1>`

- **Reduce**
 - Add together all values for a particular URL
 - Output `<URL, total count>`

Reverse Web-link Graph

- **Map**
 - Outputs `<target, source>` pair for each target URL found in page source

- **Reduce**
 - Concatenate list of all sources for a target URL
 - Output `<target, list(source)>`
Term-Vector per Host

- Summarizes important terms that occur in a set of documents \(<word, frequency>\)
- For each input document, the Map
 - Emits \(<hostname, term vector>\)
- Reduce function
 - Has all per-document vectors for a given host
 - Add term vectors; discard away infrequent terms
 - \(<hostname, term vector>\)

Inverted Index

- Map
 - Parse each document
 - Emit \(<word, document ID>\)
- Reduce
 - Accept all pairs for a given word
 - Sort document IDs
 - Emit \(<word, list(document ID)>\) pair
Implementation

- Machines are **commodity** machines
- **GFS** is used to manage data stored on the disks
Execution Overview – Part I

- *Maps* distributed across multiple machines
- Automatic partitioning of data into *M* splits
- Splits are processed **concurrently** on different machines

Execution Overview – Part II

- Partition *intermediate* key space into *R* pieces
- E.g. hash(key) mod *R*
- User specified parameters
 - *Partitioning* function
 - *Number* of partitions (*R*)
Execution Overview

The MapReduce library

- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines
Execution Overview: Step II

Program copies

- One of the copies is a **Master**
- There are **M** map tasks and **R** reduce tasks to assign
- Master
 - Picks *idle* workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III

Workers that are assigned a map task

- Read contents of their input split
- Parses `<key, value>` pairs out of the input data
- Pass each pair to user-defined *Map* function
- Intermediate `<key, value>` pairs from Maps
 - Buffered in Memory
Execution Overview: Step IV
Writing to disk

- Periodically, **buffered pairs** are written to disk
- These writes are partitioned
 - By the **partitioning function**
- **Locations** of buffered pairs on local disk
 - *Reported* back to Master
 - Master *forwards* these locations to reduce workers

Execution Overview: Step V
Reading Intermediate data

- Master notifies *Reduce* worker about locations
- *Reduce* worker reads buffered data from the **local disks** of *Maps*
- Read **all** intermediate data; sort by intermediate key
 - All occurrences of the same key are grouped together
 - Many different keys map to the same *Reduce* task
Execution Overview: Step VI
Processing data at the Reduce worker

- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of *intermediate values* to Reduce function
- Output of the Reduce function is appended
 - To output file of the reduce partition

Execution Overview: Step VII
Waking up the user

- After all Map & Reduce tasks have been completed
- Control returns to the user code
Master Data Structures

- For each Map and Reduce task
 - **State**: \{idle, in-progress, completed\}
 - Worker **machine** identity

- For each completed Map task store
 - **Location** and **sizes** of R intermediate file regions

- Information pushed incrementally to **in-progress** Reduce tasks

FAULT TOLERANCE
Worker failures

- Master pings worker periodically
- After a certain number of failed pings
 - Master marks worker as having failed
- Any Map task completed by failed worker?
 - Reset to initial idle state
 - Eligible for rescheduling

Why completed Map tasks are reexecuted

- Output is stored on local disk of failed machine
 - Inaccessible
- All reduce workers are notified about reexecution
- Reduce tasks do not need to be reexecuted
 - Output stored in GFS
Master Failures

- Could **checkpoint** at the Master
 - Data structures are well-defined

- However, since there is only one Master
 - Assumption is that failure is unlikely

- If there is a Master failure?
 - MapReduce computation is **aborted**!
 - Client must **check and retry** MapReduce operation

Semantics in the presence of failures:
If *map* and *reduce* operators are deterministic

- Distributed execution output is identical to
 - Non-faulting, sequential execution

- Atomic commits of map and reduce task outputs help achieve this
Each in-progress task writes output to private temporary files

- Map task produces \(R \) such files
 - When task completes, Map sends this info to the Master

- Reduce task produces one such file
 - When reduce completes, worker atomically:
 - Renames temporary file to final output file
 - Uses GFS to do this

Locality

- Conserve network bandwidth
- Input files managed by GFS
- MapReduce master takes location of input files into account
- Schedule task on machine that contains a replica of the input slice
Locality and its impact when running large MapReduce tasks

- Most input data is read **locally**
- Consumes no network bandwidth

Task Granularity
Task Granularity

- Subdivide map phase into M pieces
- Subdivide reduce phase into R pieces
- $M, R \gg$ number of worker machines
- Each worker performing many different tasks:
 - Improves **dynamic load balancing**
 - Speeds up **recovery** during failures

Practical bounds on how large M and R can be

- Master must make $O(M + R)$ scheduling decisions
- Keep $O(MR)$ state in memory
Practical bounds on how large M and R can be

- **M** is chosen such that
 - Input data is roughly 16 MB to 64 MB

- **R** constrained by users
 - Output of each reduce is in a separate file

- **R** is a *small multiple* of the number of machines that will be used

Typical values used at Google

- **M** = 200,000
- **R** = 5,000
- **W** = 2,000 worker machines
BACKUP TASKS

Stragglers

- Machine that takes an **unusually long time** to complete a map or reduce operation
- Can slow down entire computation
How stragglers arise

- Machine with a **bad disk**
 - Frequent, correctable errors
 - Read performance drops from 30 MB/s to 1 MB/s

- Over **scheduling**
 - Many tasks executing on the same machine
 - *Competition* for CPU, memory, disk or network cycles

- **Bug** in machine initialization code
 - Processor caches may be disabled

Alleviating the problem of stragglers

- When a MapReduce operation is **close to completion**
- Schedule **backup** executions of **remaining** in-progress tasks
- Task completed when
 - Primary or backup finishes execution
- **Significantly** reduces time to complete large MapReduce operations
REFINEMENTS

Partitioning Function

- Users simply specify R
 - The number of output files

- Default partitioning
 - hash(key) mod R

- Sometimes output keys are URLs
 - Entries from a host must go to same output file
 - hash(Hostname(urlkey)) mod R
Ordering Guarantees

- Intermediate key/pairs are processed in increasing key order
- Easy to generate sorted output file

The Combiner function

- There is significant repetition in intermediate keys produced by each map task
- For word-frequencies
 - Each map may produce 100s or 1000s of <the, “1”>
- All of these counts sent over the network
- Combiner: Does partial merging of this data
 - Before it is sent to reducer
Combiner function

- Executed on each machine that performs map task
- Code implementing combiner & reduce function
 - Usually the same … [We will see an example where this is not true.]
- Difference?
 - COMBINE: Output written to intermediate file
 - REDUCE: Output written to final output file

Input/Output Types: Support for reading input data in different formats

- Text mode treats every line as a <key, value> pair
 - Key: Offset in the file
 - Value: Contents of the line
- <key, value> pairs are sorted by key
- Each input type knows how to split itself for
 - Processing as separate map tasks
 - Text mode splitting occurs only at line boundaries
Side-effects

- Besides intermediate files, other auxiliary files may be produced
 - Side effects

- No atomic commits for multiple auxiliary files that are produced

Skipping Bad Records [1/3]

- Bugs in user code cause Map or Reduce functions to crash
 - Deterministically: On certain records

- Fix the bug?
 - Yes, but not always feasible

- Acceptable to ignore a few records
Skipping Bad Records

[2/3]

- Optional mode of operation
 1. Detect records that cause *deterministic crashes*
 2. Skip them

- Each worker installs a *signal handler* to catch segmentation violations and bus errors

Skipping Bad Records

[3/3]

- Signal handler sends *last gasp* UDP packet to the Master
 - Contains sequence number

- When Master sees more than 1 failure at that record
 - Indicates record should be skipped during next execution
Local Execution

- Support for **sequential execution** of MapReduce operation on a single machine
 - Helps with debugging, profiling, and testing
- Controls to *limit* computation to a particular map
- Invoke programs with a special flag
 - Use debugging and testing tools

Status Information

- Master runs internal HTTP Server
- Exports pages for viewing
- Show the progress of a computation
 - Number of tasks in progress
 - Number of tasks that completed
 - Bytes of input
 - Bytes of intermediate data
 - Processing rate
The contents of this slide set are based on the following references

- Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150