Trying to have your cake and eat it too
Each phase pines for tasks with locality and their numbers on a tether
Now within a phase, you get one, but not the other
Who gets what?
Stay tuned to find out

API differences

The new API favors abstract classes over interfaces
Makes things easier to evolve
New API is in org.apache.hadoop.mapreduce package
Old API can be found in org.apache.hadoop.mapred
New API makes use of context objects
Context unifies roles of JobConf, OutputCollector, and Reporter
from the old API
The old and new MapReduce APIs

- The new API's `reduce()` method passes values as `Iterable` rather than as `Iterator`
- Makes it easier to iterate over values using the `for-each` loop construct

```java
for (VALUEIN value: values) {
    ...
}
```

Hadoop divides the input to a MapReduce job into fixed-sized pieces

- These are called `input-splits` or just `splits`
- Creates one map task per split
 - Runs user-defined map function for each `record` in the split

Split strategy: Having many splits

- Time taken to process split is small compared to processing the whole input
- Quality of load balancing increases as splits become fine-grained
 - Faster machines process proportionally more splits than slower machines
 - Even if machines are identical, this feature is desirable
 - Failed tasks get relaunched, and there are other jobs executing concurrently

Split strategy: If the splits are too small

- Overheads for managing splits and map task creation dominates total job execution time
- Good split size tends to be an HDFS block
 - This could be changed for a cluster or specified when each file is created

Scheduling map tasks

- Hadoop does its best to run a map task on the node where input data resides in HDFS
 - Data locality
- What if all three nodes holding the HDFS block replicas are busy?
 - Find free map slot on node in the same rack
 - Only when this is not possible, is an off-rack node utilized
 - Inter-rack network transfer
Why the optimal split size is the same as the block size ...

- Largest size of input that can be stored on a single node
- If split size spanned two blocks:
 - Unlikely that any HDFS node has stored both blocks
 - Some of the split will have to be transferred across the network to node running the map task
 - Less efficient than operating on local data without the network movement

Managing Outputs

Map task outputs

- Stored on the local disk
 - Not HDFS
- Once the job is complete, intermediate map outputs are thrown away
 - Storing in HDFS with replication is an overkill

Reduce tasks do not have the advantage of data locality

- Input to a single reduce task
 - Output from all the mappers
 - Sorted map outputs transferred over the network to node where reduce task is running
 - Merged and then passed to the reduce function
 - Output of reduce task stored on HDFS
 - One replica of block is stored on local node, other replicas are stored on off-rack nodes

Number of reduce tasks

- Not governed by the size of the input
- Specified independently

When there are multiple reducers

- Maps partition their outputs
 - One partition for each reduce task
 - There can be many keys in each partition
 - Records for a given key are all in the same partition
 - Partitioning controlled with a partitioning function
 - Default uses a hash function to bucket the key space
Combiner functions

- Many MapReduce jobs are limited by the available network bandwidth
 - Framework has mechanisms to minimize the data transferred between map and reduce tasks
- A combiner function is run on the map output
 - Combiner output fed to the reduce task

Combiner function

- No guarantees on how many times Hadoop will call this on a map output record
- The combiner should, however, result in the same output from the reduce task
- Contract for the combiner constrains the type of function that can be used

Combiner function: Let’s look at the maximum temperature example [1/2]

<table>
<thead>
<tr>
<th>Year</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>20</td>
</tr>
<tr>
<td>1950</td>
<td>10</td>
</tr>
</tbody>
</table>

Map 1

- (1950, 25)
- (1950, 25)

Map 2

- (1950, 15)
- (1950, 15)

Reduce

- (1950, 25)

Combiner

Combiner function: Let’s look at the maximum temperature example [2/2]

<table>
<thead>
<tr>
<th>Year</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>20</td>
</tr>
<tr>
<td>1950</td>
<td>15</td>
</tr>
</tbody>
</table>

Map 1

- (1950, 20)
- (1950, 15)

Map 2

- (1950, 25)
- (1950, 25)

Reduce

- (1950, 25)

Combiner

Combiner
A closer look at the function calls

- $\max(0, 20, 10, 25, 15) = \max(\max(0, 20, 10), \max(25, 15)) = \max(20, 25) = 25$

Functions with this property are called **commutative and associative**

- Commutative: Order of operands $(5 + 2) = (2 + 5)$
- Division and subtraction are not commutative
- Associative: Order of operators $5 \times (5 \times 3) = (5 \times 5) \times 3$
- Vector cross products are not

Not all functions possess the commutative and associative properties

- What if we were computing the mean temperatures?
- We cannot use mean as our combiner function

$$\text{mean}(0, 20, 10, 25, 15) = 14$$

BUT

$$\text{mean}((\text{mean}(0, 20, 10)), \text{mean}(25, 15)) = \text{mean}(10, 20) = 15$$

Combiner: Summary

- The combiner does not replace the reduce function
- Reduce is still needed to process records from different maps
- But it is useful for cutting down traffic from maps to the reducer

Specifying a combiner function

```java
public class MaxTemperatureWithCombiner {
    public static void main(String[] args) throws Exception {
        Job job = Job.getInstance();
        job.setJarByClass(MaxTemperature.class);
        job.setJobName("Max temperature");
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setMapperClass(MaxTemperatureMapper.class);
        job.setCombinerClass(MaxTemperatureReducer.class);
        job.setReducerClass(MaxTemperatureReducer.class);
        job.setOutputKey(Text.class);
        job.setOutputValueClass(IntWritable.class);
        System.exit(job.waitForCompletion(true) ? 0: 1);
    }
}
```

Rationale

- Datasets often outgrow storage capacity of a single machine
- Necessary to partition data across multiple machines
- File systems managing storage access across a network of machines
- Distributed file systems
HDFS is designed for storing ...

- Very large files
 - File sizes are in the order of 100s of GB or a few TB
- With streaming data access patterns
 - Write-once, read many times pattern
 - Each analysis involves a large portion of the dataset
 - Time to read dataset is more important than latency for the first record
- On commodity hardware

What is HDFS not suitable for? [1/2]

- Low-latency data access
- Lots of small files
 - Name nodes hold file system metadata in memory
 - Each file, directory and block takes about 150 bytes
 - If there were 10^6 files each of which had 1 block
 - 300 MB of memory
 - Millions of files are feasible but not billions of files

What is HDFS not suitable for? [2/2]

- Multiple writers, arbitrary file modifications
 - HDFS does not support:
 - Multiple concurrent writers
 - Modifications at arbitrary offsets

Block

- Filesystems for a single disk, deal with data in blocks
 - Integral number of the HDD block size
- Block sizes
 - Filesystem blocks are a few KB
 - Disk blocks are normally 512 bytes

HDFS Blocks

- Has a much larger size: 128 MB [default]
- Files are broken into block-sized chunks
 - Each chunk is stored as an independent unit
- If the last chunk is less than the HDFS block size?
 - No space is wasted because the blocks are themselves stored as files

Why is the block-size so big?

- Time to transfer data from disk can be made significantly larger than the time to seek first block
- If the seek time is 10 ms and transfer rate is 100 MB/sec?
 - To make seek time 1% of the transfer time, block size should be 100 MB
- Must be careful not to overdo block size increase
 - Since tasks operate on blocks, the number of tasks could reduce.
Benefits of the block abstraction in distributed file systems

- File can be larger than any single disk in the cluster
- Simplifies the storage subsystem
 - File metadata (including permissions) handled by another subsystem and not stored with the block

Blocks and replication

- Each block is replicated on a small number of physically separate machines
- If a block becomes unavailable:
 1. Copy read from another location transparently
 2. That block is also replicated from its alternative locations to other live machines
 - Bring replication factor back to the desired level

HDFS' fsck command

- List blocks that make up each file in the filesystem

 % hadoop fsck / -files -blocks

Nodes in the HDFS

- Namenode {master}
- Datanode {worker}

Namenode

- Manages filesystem namespace
- Maintains filesystem tree and metadata
 - For all files and directories in the tree
- Information stored persistently on local disk in two files
 - Namespace image and the edit log

Tracking location of blocks comprising files

- Namenode knows about datanodes on which all blocks of a file are located
- The locations of the blocks are not stored persistently
 - Information reconstructed from datanodes during start up
Interacting with HDFS

- HDFS presents a POSIX-like file system interface
- Client code does not need to know about the namenode and datanode to function

Datanodes

- Store and retrieve blocks
 - Initiated by the client or the namenode
 - Periodically reports back to the namenode with the list of blocks that they store

Failure of the namenode

- Decimates the filesystem
- All files on the filesystem are lost
 - No way of knowing how to reconstitute the files from the blocks

Guarding against namenode failures

- Backup files comprising the persistent state of the filesystem metadata
 - Hadoop can be configured so that the namenode writes its persistent state to multiple filesystems
 - Writes are synchronous and atomic
 - Run a secondary namenode
 - Does not act as a namenode
 - Periodically merges namespace image with edit log

Secondary namenode

- Runs on a separate physical machine
 - Requires as much memory as the namenode to perform the merge operation
- Keeps a copy of the merged namespace image
 - Can be used if the namenode fails
- However, the secondary namenode lags the primary
 - Data loss is almost certain

HDFS Federation (introduced in 0.23)

- On large clusters with many files, memory is a limiting factor for scaling
- HDFS federation allows scaling with the addition of namenodes
 - Each manages a portion of the filesystem namespace
 - For e.g., one namenode for /user and another for /share
HDFS Federation [1/2]

- Each namenode manages a namespace volume
 - Metadata for the namespace and block pool
- Namespace volumes are independent of each other
 - No communications between namenodes
 - Failure of one namenode does not affect availability of another

HDFS Federation [2/2]

- Block pool storage is not partitioned
- Datanodes register with each namenode in the cluster
 - Store blocks from multiple blockpools

Recovering from a failed namenode [1/2]

- Admin starts a new primary namenode
 - With one of the filesystem metadata replicas
 - Configure datanodes and clients to use this namenode
- New namenode unable to serve requests until:
 ① Namespace image is loaded into memory
 ② Replay of edit log is complete
 ③ Received enough block reports from datanodes to leave safe mode

Recovering from a failed namenode [2/2]

- Recovery can be really long
 - On large clusters with many files and blocks this can be about 30 minutes
 - This also impacts routine maintenance

HDFS High Availability has features to cope with this

- Pair of namenodes in active standby configuration
- During failure of active namenode, standby takes over the servicing of client requests
 - In 10s of seconds

HDFS High-Availability: Additional items to get things to work

- Namenodes use a highly-available shared storage to store the edit log
- Datanodes must send block reports to both namenodes
 - Black mappings stored in memory not disk
- Clients must be configured to handle namenode failover
HDFS HA: Dealing with ungraceful failovers

- Slow network or a network partition can trigger failover transition
 - Previously active namenode thinks it is still the active namenode
- The HDFS HA tries to avoid this situation using fencing
 - Previously active namenode should be prevented from causing corruptions

Fencing mechanisms: To shutdown previously active namenode

- Kill the namenode’s process
- Revoking access to the shared storage directory
- Disabling namenode’s network port
 - Using the remote management command
- STONITH
 - Use specialized power distribution unit to forcibly power down the host machine

The contents of this slide set are based on the following references