CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS

[SPARK]

Spark: It's all about transformation and actions
Transformations
- Wrangle with the data
- Consume, and beget, an RDD
- Flock together ... to form daisy chains

But it is actions
- That trigger evaluations
- Providing them potency
- Revealing their expressive power

Shrideep Pallickara
Computer Science
Colorado State University

Topics covered in this lecture

- Resilient Distributed Datasets
- Common Transformations and Actions
Resilient Distributed Dataset (RDD)

- RDD is an immutable distributed collection of objects
- Each RDD is split into multiple partitions
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes
Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```

Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate

- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in an external storage system (HDFS)
Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a **lazy fashion**
 - When?
 - The first time they are used in an **action**

- Loading lazily allows transformations to be performed **before** the action

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to **compute just the data needed** for the result

- Example:
  ```
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```

- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines
RDD and actions

- RDDs are **recomputed** (by default) every time you run an action on them.

- If you wanted to **reuse** an RDD?
 - Ask Spark to **persist** it using `RDD.persist()`.
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines).
 - Persisted RDD is used in future actions.

RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in **repeated computations**.

- RDDs are immutable, so **transforming an RDD returns a new RDD** rather than the existing one.

- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient.
Every Spark program and shell works as follows

1. **Create** some input RDD from external data
2. **Transform** them to define new RDDs using transformations like `filter()`
3. Ask Spark to `persist()` any intermediate RDDs that needs to be reused
4. **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark

A CLOSER LOOK AT RDD OPERATIONS

SLIDES CREATED BY: SHRIDEEP PALICKARA
RDDs support two types of operations

- **Transformations**
 - Operations that *return a new RDD*. E.g.: `filter()`

- **Actions**
 - Operations that *return a result* to the driver program or write to storage
 - Kicks of a computation. E.g.: `count()`

- **Distinguishing aspect?**
 - Transformations return RDDs
 - Actions return *some other* data type

Transformations

- Many transformations are **element-wise**
 - Work on only one element at a time

- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.text`, with several messages, but we only want to select error messages

  ```python
  inputRDD = sc.textFile("log.txt")
  errorsRDD = inputRDD.filter(lambda x:"error" in x)
  ```
In our previous example ...

- **filter** does not mutate inputRDD
 - Returns a pointer to an entirely new RDD
 - inputRDD can still be reused later in the program

- We could use inputRDD to search for lines with the word “warning”
 - While we are at it, we will use another transformation, union(), to print number of lines that contained either

  ```
  errorsRDD = inputRDD.filter(lambda x: "error" in x)
  warningsRDD = inputRDD.filter(lambda x: "warning" in x)
  badlinesRDD = errorsRDD.union(warningsRDD)
  ```

In our previous example

- Note how union() is different from filter()
 - Operates on 2 RDDs instead of one

- Transformations can actually operate on any number of RDDs
RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph

- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example
Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually **do something** with the dataset
 - Actions
- Forces *evaluations of the transformations* required for the RDD they were called on

Let’s try to print information about badlinesRDD

```python
print "Input had " + badLinesRDD.count() + "concerning lines"
print "here are 10 examples:"
for line in badLinesRDD.take(10):
    print line
```
RDDS also have a collect to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use `collect()` on it
 - Should NOT be used on large datasets
- In most cases, RDDs cannot be `collect()`ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3

Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will not begin to execute until it sees an action
- Uses this to **reduce the number of passes** it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g. `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested
How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as containing instructions on how to compute the data that we build through transformations

- Loading data into a RDD is lazily evaluated just as transformations are

COMMON TRANSFORMATIONS AND ACTIONS
Element-wise transformations: `filter()`

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function

Element-wise transformations: `map()`

- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD
Things that can be done with map()

- Fetch website associated with each URL in collection to just squaring numbers
- map()'s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use flatMap()

```python
lines = sc.parallelize(["hello world", "hi"])
words = lines.flatMap(lambda line: line.split(" "))
words.first()  # returns hello
```

Difference between map and flatMap

```python
RDD1 = {"coffee panda", "happy panda", "happiest panda party"}
RDD1.map(tokenize)
```

```python
mappedRDD = {"coffee", "panda"}, {"happy", "panda"}, {"happiest", "panda", "party"}
```

```python
RDD1.flatMap(tokenize)
```

```python
flatMapRDD = {"coffee", "panda", "happy", "panda", "happiest", "panda", "party"}
```
Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

- **RDD1**
 - \{coffee, coffee, panda, tiger, tea\}
- **RDD2**
 - \{coffee, tiger, snake\}
- **RDD1.distinct()**
 - \{coffee, tiger, panda, tea\}
- **RDD1.union(RDD2)**
 - \{coffee, coffee, coffee, panda, tiger, tiger, tea, snake\}
- **RDD1.intersection(RDD2)**
 - \{coffee, tiger\}
- **RDD1.subtract(RDD2)**
 - \{panda, tea\}
Cartesian product between two RDDs

RDD1
{User1, User2, User3}

RDD2
{Venue("Betabrand"), Venue("Asha Tree House"), Venue("Ritual"))}

RDD1.cartesian(RDD2)
{(User1, Venue("Betabrand")),
(User1, Venue("Asha Tree House")),
(User1, Venue("Ritual")),
(User2, Venue("Betabrand")),
(User2, Venue("Asha Tree House")),
(User2, Venue("Ritual")),
(User3, Venue("Betabrand")),
(User3, Venue("Asha Tree House")),
(User3, Venue("Ritual"))}

COMMON ACTIONS
Actions on Basic RDDs

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? + sums the RDD

 \[
 \text{sum} = \text{rdd.reduce}(x, y) \rightarrow x + y
 \]

- **fold()** takes a function with the same signature as **reduce()**, but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Both **fold()** and **reduce()** require return type of same type as the RDD elements

- The aggregate() removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
- **collect()**
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: \{1, 2, 3, 3\}
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}

- `count()`
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}

- `countByValue()`
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: \{(1,1), (2,1), (3,2)\}
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}

- **take**(num)
 - Return num elements from the RDD
 - Invocation: \texttt{rdd.take(2)}
 - Result: \{1, 2\}

- **reduce**(func)
 - Combine the elements of the RDD together in parallel
 - Invocation: \texttt{rdd.reduce((x,y) => x + y)}
 - Result: 9
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
- **aggregate\((\text{zeroValue})(\text{seqOp}, \text{combOp})\)**
 - Similar to `reduce()` but used to return a different type
 - **Invocation:**
    ```scala
    rdd.aggregate( (0,0))
    ((x,y) => (x._1 + y, x._2 + 1),
     (x,y) => (x._1 + y._1, x._2 + y._2))
    ```
 - **Result:** \((9, 4) \)

Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
- **foreach\((\text{func})\)**
 - Apply the provided function to each element of the RDD
 - **Invocation:** \(rdd.foreach(\text{func}) \)
 - **Result:** Nothing
PERSISTENCE (CACHING)

Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will **recompute RDD and all of its dependencies** each time we call an action on the RDD
 - Super expensive for iterative algorithms

- To avoid recomputing RDD multiple times?
 - Ask Spark to **persist** the data
 - The nodes that compute the RDD store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`
Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed

- Also, replicate data on multiple nodes
 - To handle node failures without slowdowns

Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
What if you attempt to cache too much data that does not fit in memory?

- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk

- RDDs also come with a method, **unpersist()**
 - Manually remove data elements from the cache

WORKING WITH KEY/VALUE PAIRS
RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats

- Advanced feature to control layout of pair RDDs across nodes
 - Partitioning

RDDs containing key/value pairs

- Are called **pair RDDs**

- Useful **building block** in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - `reduceByKey()` to aggregate data separately for each key
 - `join()` to merge two RDDs together by grouping elements of the same key
Pair RDDs

- RDDs that contain *key/value pairs*
- Expose partitions that allow you to act on each key in parallel or regroup data across the network
Creating Pair RDDs

- pairs=lines.map(lambda x: (x.split(" ") [0], x))
 - Creates a pairRDD using the first word as the key

- Java does not have a built-in tuple type
 - scala.Tuple2 class
 - new Tuple2(elem1, elem2)

The contents of this slide-set are based on the following references
