Resilient Distributed Datasets (RDD)

- RDD is an immutable distributed collection of objects
- Each RDD is split into multiple partitions
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```
Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a *lazy* fashion
 - When?
 - The first time they are used in an action
- Loading lazily allows transformations to be performed before the action

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to compute just the data needed for the result
- Example:
  ```
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```
- If Spark were to load and store all lines in the file, as soon as we wrote
  ```
  lines = sc.textFile()
  ```
 would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions

- RDDs are recomputed (by default) every time you run an action on them
- If you wanted to reuse an RDD?
 - Ask Spark to persist it using `persist()`
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines)
 - Persisted RDD is used in future actions

RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in repeated computations
- RDDs are immutable, so transforming an RDD returns a new RDD rather than the existing one
- Cross-cutting implications:
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient

Every Spark program and shell works as follows

1. **Create** some input RDD from external data
2. **Transform** them to define new RDDs using transformations like `filter()`
3. Ask Spark to `persist()` any intermediate RDDs that needs to be reused
4. **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark

A CLOSER look at RDD OPERATIONS
RDDs support two types of operations

- **Transformations**
 - Operations that return a new RDD. E.g.: `filter()`
- **Actions**
 - Operations that return a result to the driver program or write to storage
 - Kicks off a computation. E.g.: `count()`
- **Distinguishing aspect?**
 - Transformations return RDDs
 - Actions return some other data type

Transformations

- Many transformations are **element-wise**
 - Work on only one element at a time
- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.txt`, with several messages, but we only want to select error messages

```python
inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x: "error" in x)
```

In our previous example ...

- **filter does not mutate** `inputRDD`
 - Returns a pointer to an entirely new RDD
 - `inputRDD` can still be reused later in the program
- We could use `inputRDD` to search for lines with the word “warning”
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either errors or warnings

```python
errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badlinesRDD = errorsRDD.union(warningsRDD)
```

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph
- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example
Actions

- We can create RDDs from each other using transformations.
- At some point, we need to actually do something with the dataset.
- Forces evaluations of the transformations required for the RDD they were called on.

Lazy Evaluation

- Transformations on RDDs are lazily evaluated.
 - Spark will not begin to execute until it sees an action.
 - Uses this to reduce the number of passes. It has to take over data by grouping operations together.
 - What does this mean?
 - When you call a transformation on an RDD (e.g., `map`), the operation is not immediately performed.
 - Spark internally records metadata that operation is requested.

How you should think of RDDs

- Rather than thinking of it as containing specific data.
 - Best to think of it as containing instructions on how to compute the data that we build through transformations.
- Loading data into a RDD is lazily evaluated just as transformations are.

Let's try to print information about badlinesRDD

```scala
print "Input had " + badLinesRDD.count() + " concerning lines"
for line in badLinesRDD.take(10)
  print line
```
Element-wise transformations: `filter()`
- Takes a function and returns an RDD that only has elements that pass the `filter()` function

Element-wise transformations: `map()`
- Takes a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

Things that can be done with `map()`
- Fetch website associated with each URL in collection to just squaring numbers
- `map()`’s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use `flatMap()`

Difference between `map` and `flatMap`

Psuedo set operations
- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

Professor: Shrideep Pallikara

SLIDES CREATED BY: SHRIDEEP PALLICKARA
Cartesian product between two RDDs

```
RDD1 cartesian(RDD2)
{ (User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")),
  (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")),
  (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual"))
}
```

Actions on Basic RDDs
- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type.
 - E.g., of such an operation? + sums the RDD
 - Invocation: `rdd.reduce((x,y) => x + y)`
- **fold()** takes a function with the same signature as `reduce()`, but also takes a "zero value" for initial call.
 - "Zero value" is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Examples: Basic actions on RDDs
- **collect()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type.
 - E.g., of such an operation? + sums the RDD
 - Invocation: `rdd.reduce((x,y) => x + y)`
- **fold()** takes a function with the same signature as `reduce()`, but also takes a "zero value" for initial call.
 - "Zero value" is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

- **aggregate()** removes that constraint
 - For e.g., when computing a running average, maintain both the count so far and the number of elements

- **fold() and reduce() require return type of same type as the RDD elements**
 - The aggregate() removes that constraint
 - For e.g., when computing a running average, maintain both the count so far and the number of elements

Examples: Basic actions on RDDs
- Our RDD contains `{1, 2, 3, 3}`
- **collect()**
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: `{1, 2, 3, 3}`
Examples: Basic actions on RDDs

- **Our RDD contains (1, 2, 3, 3)**

 - **count()**
 - Number of elements in the RDD
 - Invocation: \(rdd.count() \)
 - Result: 4

- **countByValue()**
 - Number of times each element occurs in the RDD
 - Invocation: \(rdd.countByValue() \)
 - Result: \{ (1,1), (2,1), (3,2) \}

- **take(num)**
 - Return \(num \) elements from the RDD
 - Invocation: \(rdd.take(2) \)
 - Result: \{ 1, 2 \}

- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: \(rdd.reduce((x,y) => x + y) \)
 - Result: 9

- **aggregate(zeroValue)(seqOp, combOp)**
 - Similar to reduce() but used to return a different type
 - Invocation: \(rdd.aggregate((0,0)) \)
 \((x,y) => (x._1 + y, x._2 + 1), \)
 \((x,y) => (x._1 + y._1, x._2 + y._2) \)
 - Result: \((9, 4) \)

- **foreach(func)**
 - Apply the provided function to each element of the RDD
 - Invocation: \(rdd.foreach(\text{func}) \)
 - Result: Nothing
CS455: Introduction to Distributed Systems [Spring 2020]
Dept. Of Computer Science, Colorado State University

Persistence (Caching)

Why persistence?
- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times.
- Naively, Spark will recompute RDD and all of its dependencies each time we call an action on the RDD.
- Super expensive for iterative algorithms.
- To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data.
 - The nodes that compute the RDD, store the partitions.
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`

Coping with failures
- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed.
- Also, replicate data on multiple nodes.
- To handle node failures without slowdowns.

Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU Time</th>
<th>In Memory</th>
<th>On Disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

What if you attempt to cache too much data that does not fit in memory?
- Spark will **evict old partitions** using a Least Recently Used Cache policy.
 - For memory only storage partitions, it will be recomputed the next time they are accessed.
 - For memory_and_disk ones? Write them out to disk.
- RDDs also come with a method, `unpersist()`.
 - Manually remove data elements from the cache.

Working with Key/Value Pairs
RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
- Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats
- Advanced feature to control layout of pair RDDs across nodes
- Partitioning

RDDs containing key/value pairs

- Are called pair RDDs
- Useful building block in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - `reduceByKey()` to aggregate data separately for each key
 - `join()` to merge two RDDs together by grouping elements of the same key

Pair RDDs

- RDDs that contain key/value pairs
- Expose partitions that allow you to act on each key in parallel or regroup data across the network

Creating Pair RDDs

- `pairs=lines.map(lambda x: (x.split(" "))[0], x))` creates a pairRDD using the first word as the key
- Java does not have a built-in tuple type
 - `scala.Tuple2 class
 new Tuple2(elem1, elem2)`