CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS

Spark: What fuels it?
Memory residency, of course
With frugal I/O that it must reinforce

How? By ...
Procrastinating (through lazy evaluations)
Avoiding repeated sweeps
And doing it only as a last resort

Shrideep Pallickara
Computer Science
Colorado State University

Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts
As distributed data analytics have grown common ...

- Practitioners have sought easier tools for the task
- Apache Spark has emerged as one of the most popular
 - Extending and generalizing MapReduce
Spark: What is it?

- **Cluster computing platform**
 - Designed to be fast and general purpose

- **Speed**
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing

- **Why is speed important?**
 - Difference between waiting for hours versus exploring data interactively

Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ

- Spark’s internals, especially how it handles failures, differ from many traditional systems

- Spark’s ability to leverage **lazy evaluation** within memory computations makes it particularly unique
Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are **generalizable**
- On its own, Spark is **not** a data storage solution
 - Performs computations in Spark JVMs that last only for the duration of a Spark application
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - To house the data processed with Spark
 - A cluster manager — to orchestrate the distribution of Spark applications across the cluster

Key enabling idea in Spark

- **Memory resident data**
- Spark loads data into the memory of worker nodes
 - Processing is performed on memory-resident data
A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>time</th>
<th>Scaled time in human terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 μs)</td>
<td>167 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>162 days</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000 ns (100 ms)</td>
<td>6.3 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing
- This has previously required multiple, independent tools
Running Spark

- You can use Spark from Python, Java, Scala, R, or SQL
- Spark itself is written in Scala, and runs on the Java Virtual Machine (JVM)
 - You can Spark either on your laptop or a cluster, all you need is an installation of Java
- If you want to use the Python API, you will also need a Python interpreter (version 2.7 or later)
- If you want to use R, you will need a version of R on your machine

Spark integrates well with other tools

- Can run in Hadoop clusters
- Access Hadoop data sources, including Cassandra
At its core, Spark is a computational engine

- Spark is responsible for several aspects of applications that comprise
 - Many tasks across many machines (compute clusters)

- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring

THE SPARK SOFTWARE STACK
The Spark stack

Spark Core

- Spark SQL: structured data
- Spark Streaming: real-time
- Mlib & ML: machine learning
- GraphX: Graph processing

Standalone Scheduler
YARN
Mesos

Benefits of tight integration [1/2]

- All libraries and higher-level components benefit from improvements at the lower layers
- E.g.: Spark’s core engine adds optimization? SQL and ML libraries automatically speed-up as well
Benefits of tight integration [2/2]

- Biggest advantage is ability to build applications that **seamlessly combine different processing models**
- An application may use ML to classify data in real time as it is being ingested
 - Analysts can query this resulting data, also in real time, via SQL (e.g.: join data with unstructured log-files)

Spark Core

- **Basic functionality** of Spark
 - Task scheduling, memory management, fault recovery, and interacting with storage systems
 - Also, the API that defines Resilient Distributed Datasets (**RDDs**)
 - Spark’s **main programming abstraction**
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)
Spark SQL

- Package for working with **structured data**
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL

- Spark SQL defines an interface for a semi-structured data type, called **DataFrames**
 - And as of Spark 1.6, a semi-structured, typed version of RDDs called **Datasets**
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL
Spark Streaming

- Enables processing of **live streams** of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on **minibatches** of data
- Has a number of unique considerations, such as the **window sizes** used for batches

MLib

- Library that contains common machine learning functionality
- Algorithms include:
 - Classification, regression, clustering, and collaborative filtering
- Low-level primitives
 - Generic gradient descent optimization algorithm
- Alternatives?
 - Mahout, sci-kit learn, VW, WEKA, and R among others
What about Spark ML?

- Has existed since Spark 1.2
- Spark ML provides a higher-level API than MLlib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
- Eventually the Spark community plans to move over to ML and deprecate MLlib

Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge
Cluster Managers

- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.
Spark Shells

- Interactive [Python and Scala]
 - Similar to shells like Bash or Windows command prompt
- Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
 - Spark shells allow interaction with data that is distributed across many machines
 - Spark manages complexity of distributing processing
Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java

- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: **Scala** and **Clojure**

Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications

- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, Java 8 incorporates several of the more useful features of Scala and other functional languages.
What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods
- In a functional language, **functions are treated the same way as data**
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp
- Javascript?
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java
Spark APIs

- Spark has two fundamental sets of APIs:
 - The low-level “unstructured” APIs, and
 - The higher-level structured APIs
Structured APIs

- Structured APIs are a tool for manipulating all sorts of data
 - From unstructured log files to semi-structured CSV files and highly structured Parquet files
- Refers to three core types of distributed collection APIs:
 - Datasets
 - DataFrames
 - SQL tables and views
- Majority of the Structured APIs apply to both batch and streaming computation

Spark’s Toolset

- Structured Streaming
- Advanced Analytics
- Libraries & Ecosystem
- Structured APIs
 - Datasets
 - DataFrames
 - SQLs
- Low Level APIs
 - RDDs
 - Distributed variables
Spark has two notions of structured collections: DataFrame and Datasets

- DataFrame and Datasets are (distributed) table-like collections with well-defined rows and columns.
- Each column:
 - Must have the same number of rows as all the other columns (although you can use null to specify the absence of a value).
 - Has type information that must be consistent for every row in the collection.

DataFrame versus Datasets

- DataFrames are considered “untyped”.
- Datasets are considered “typed”.
How does Spark view DataFrames and Datasets?

- To Spark, DataFrames and Datasets represent immutable, lazily evaluated plans that specify what operations to apply to data residing at a location to generate some output.
- When we perform an action on a DataFrame, we instruct Spark to perform the actual transformations and return the result.
- These represent **plans** of how to manipulate rows and columns to compute the user’s desired result.

The DataFrame is the most common Structured API

- Simply represents a **table** of data with rows and columns.
- The list that defines the columns and the types within those columns is called the **schema**.
The DataFrame concept is not unique to Spark

- R and Python both have similar concepts.
 - However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines
 - This limits what you can do with a given DataFrame to the resources that exist on that specific machine

- A Spark DataFrame can span thousands of computers.
Core Spark Concepts

- Drivers
- SparkContext
- Executors

Spark in a nutshell

- Spark allows users to write a program for the driver (or master node) on a cluster computing system that can perform operations on data in parallel
- Spark represents large datasets as RDDs which are stored in the executors (or worker nodes)
- The objects that comprise RDDs are called partitions and may be (but do not need to be) computed on different nodes of a distributed system
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system
Drivers

- Every Spark application consists of a **driver** program
- Driver **launches various parallel operations** on the cluster
- Constituent elements
 - Application's main function
 - Defines distributed datasets on the clusters
 - Applies operations to these datasets

SparkContext

- Driver programs access Spark through a **SparkContext** object
 - Represents a **connection** to a computing cluster
- Within the shell?
 - Created as the variable `sc`
 - You can even print out `sc` to see the type
- Once you have a SparkContext, you can use it to build RDDs
 - And then run operations on the data ...
Executors

- Driver programs manage a number of nodes, called **executors**
- Executors are responsible for running operations
- For example:
 - If we were running a `count()` operation on cluster
 - Different machines might count lines in different ranges of the file

Components for distributed execution in Spark

![Components Diagram]
Lot of Spark’s API revolves around passing functions to its operators

```python
def hasPython(line):
    return "Python" in line

pythonLines =
    lines.filter(hasPython)
```

Also known as the `lambda or =>` syntax

```java
JavaRDD<String> pythonLines =
    lines.filter(line => line.contains("Python"));
```

```java
JavaRDD<String> pythonLines =
    lines.filter(line -> line.contains("Python"));
```
The contents of this slide-set are based on the following references:

- *Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data*. Byron Ellis. Wiley. [Chapter 2]