CS 455: Introduction to Distributed Systems

[Spark]

Spark: It's all about transformation and actions

Transformations
- Wrangle with the data
- Consume, and beget, an RDD
- Flock together ... to form daisy chains

But it is actions
- That trigger evaluations
- Providing them potency
- Revealing their expressive power

Shrideep Pallickara
Computer Science
Colorado State University

Topics covered in this lecture

- Resilient Distributed Datasets
- Common Transformations and Actions
Resilient Distributed Dataset (RDD)

- RDD is an immutable distributed collection of objects
- Each RDD is split into multiple partitions
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes
Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```

Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate

- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in external storage system (HDFS)
Some more about RDDs

- Although you can define new RDDs anytime:
 - Spark computes them in a **lazy fashion**
 - When?
 - The first time they are used in an action

- Loading lazily allows transformations to be performed *before* the action.

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to **compute just the data needed** for the result

- Example:
  ```python
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```

- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines.
RDD and actions

- RDDs are **recomputed** (by default) every time you run an action on them.

- If you wanted to **reuse** an RDD?
 - Ask Spark to **persist** it using RDD.persist()
 - After computing it the first time, Spark will store RDD contents in memory (**partitioned** across cluster machines)
 - Persisted RDD is used in future actions

RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in **repeated computations**.

- RDDs are immutable, so **transforming an RDD returns a new RDD** rather than the existing one.

- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient.
Every Spark program and shell works as follows

1. **Create** some input RDD from external data
2. **Transform** them to define new RDDs using transformations like `filter()`
3. Ask Spark to **persist()** any intermediate RDDs that needs to be reused
4. **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark

A CLOSER LOOK AT RDD OPERATIONS
RDDs support two types of operations

- **Transformations**
 - Operations that **return a new RDD**. E.g.: `filter()`

- **Actions**
 - Operations that **return a result** to the driver program or write to storage
 - Kicks of a computation. E.g.: `count()`

- **Distinguishing aspect?**
 - Transformations return RDDs
 - Actions return **some other** data type

Transformations

- Many transformations are **element-wise**
 - Work on only one element at a time

- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.text`, with several messages, but we only want to select error messages

    ```python
    inputRDD = sc.textFile("log.txt")
    errorsRDD = inputRDD.filter(lambda x: "error" in x)
    ```
In our previous example ...

- filter **does not mutate** inputRDD
 - Returns a pointer to an entirely new RDD
 - inputRDD can still be reused later in the program

- We could use inputRDD to search for lines with the word “warning”
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either

    ```python
    errorsRDD = inputRDD.filter(lambda x: “error” in x)
    warningsRDD = inputRDD.filter(lambda x: “warning” in x)
    badlinesRDD = errorsRDD.union(warningsRDD)
    ```

In our previous example

- Note how `union()` is different from `filter()`
 - Operates on 2 RDDs instead of one

- Transformations can actually operate on **any number** of RDDs
RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
 - Lineage graph

- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example

- `inputRDD`
 - Filter
 - `errorsRDD`
 - `warningsRDD`
 - Union
 - `badLinesRDD`
Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually **do something** with the dataset
 - Actions
- Forces *evaluations of the transformations* required for the RDD they were called on

Let's try to print information about badlinesRDD

```python
print "Input had " + badLinesRDD.count() + " concerning lines"
print "here are 10 examples:"
for line in badLinesRDD.take(10)
    print line
```
RDDs also have a `collect` to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use `collect()` on it
 - Should NOT be used on large datasets
- In most cases, RDDs **cannot be** `collect()`ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3

Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will not begin to execute until it sees an action
- Uses this to **reduce the number of passes** it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g. `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested
How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as **containing instructions on how to compute the data**
 that we build through transformations

- Loading data into a RDD is lazily evaluated just as transformations
 are
Element-wise transformations: **filter()**

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function.

Element-wise transformations: **map()**

- Takes in a function and applies it to each element in the RDD.
- Result of the function is the new value of each element in the resulting RDD.

```
inputRDD
{1, 2, 3, 4}
map x => x * x
Mapped RDD
{1, 9, 4, 16}
filter x => x != 1
Filtered RDD
{2, 3, 4}
```
Things that can be done with `map()`

- Fetch website associated with each URL in collection to just squaring numbers
- `map()`’s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use `flatMap()`

```python
lines = sc.parallelize(["hello world", "hi"])
words = lines.flatMap(lambda line: line.split(" ") )
words.first()  # returns hello
```

Difference between `map` and `flatMap`

- `RDD1.map(tokenize)`
 - `mappedRDD` = `{{"coffee", "panda"}, {"happy", "panda"}, {"happiest", "panda", "party"}}`
- `RDD1.flatMap(tokenize)`
 - `flatMappedRDD` = `{"coffee", "panda", "happy", "panda", "happiest", "panda", "party"}`
Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

<table>
<thead>
<tr>
<th>RDD1</th>
<th>RDD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>{coffee, coffee, panda, tiger, tea}</td>
<td>{coffee, tiger, snake}</td>
</tr>
</tbody>
</table>

- RDD1.distinct() \{coffee, tiger, panda, tea\}
- RDD1.union(RDD2) \{coffee, coffee, coffee, panda, tiger, tiger, tea, snake\}
- RDD1.intersection(RDD2) \{coffee, tiger\}
- RDD1.subtract(RDD2) \{panda, tea\}
Cartesian product between two RDDs

RDD1
{User1, User2, User3}

RDD2
{Venue("Betabrand"), Venue("Asha Tree House"), Venue("Ritual")}

RDD1.cartesian(RDD2)
{ (User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")), (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")), (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual")) }
Actions on Basic RDDs

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? + sums the RDD

 \[
 \text{sum} = \text{rdd.reduce}((x,y) \Rightarrow x + y)
 \]

- **fold()** takes a function with the same signature as `reduce()`, but also takes a “zero value” for initial call
 - “Zero value” is the **identity element** for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Both `fold()` and `reduce()` require return type of same type as the RDD elements

- The **aggregate()** removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
- `collect()`
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: \{1, 2, 3, 3\}
Examples: Basic actions on RDDs [2/7]

- Our RDD contains \{1, 2, 3, 3\}
 - `count()`
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

Examples: Basic actions on RDDs [3/7]

- Our RDD contains \{1, 2, 3, 3\}
 - `countByValue()`
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: \{ (1,1), (2,1), (3,2) \}
Examples: Basic actions on RDDs [4/7]

- Our RDD contains \{1, 2, 3, 3\}

- **take(num)**
 - Return \num elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: \{ 1, 2\}

Examples: Basic actions on RDDs [5/7]

- Our RDD contains \{1, 2, 3, 3\}

- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x,y) => x + y)`
 - Result: 9
Examples: Basic actions on RDDs [6/7]

- Our RDD contains \{1, 2, 3, 3\}

- `aggregate(zeroValue)(seqOp, combOp)`
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate((0,0))`
 - `((x,y) => (x._1 + y, x._2 + 1),
 (x,y) => (x._1 + y._1, x._2 + y._2))`
 - Result: \((9, 4) \)

Examples: Basic actions on RDDs [7/7]

- Our RDD contains \{1, 2, 3, 3\}

- `foreach(func)`
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: Nothing
Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times.
 - Naively, Spark will *recompute RDD and all of its dependencies* each time we call an action on the RDD.
 - Super expensive for iterative algorithms.

- To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data.
 - The nodes that compute the RDD, store the partitions.
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`
Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed

- Also, replicate data on multiple nodes
 - To handle node failures without slowdowns

Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
What if you attempt to cache too much data that does not fit in memory?

- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk

- RDDs also come with a method, `unpersist()`
 - Manually remove data elements from the cache

WORKING WITH KEY/VALUE PAIRS
RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats

- Advanced feature to control layout of pair RDDs across nodes
 - Partitioning

RDDs containing key/value pairs

- Are called pair RDDs

- Useful building block in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - reduceByKey() to aggregate data separately for each key
 - join() to merge two RDDs together by grouping elements of the same key
Pair RDDs

- RDDs that contain **key/value pairs**
- Expose partitions that allow you to act on each key in parallel or regroup data across the network
Creating Pair RDDs

- `pairs=lines.map(lambda x: (x.split(" ")[0], x))`
 - Creates a pairRDD using the first word as the key

- Java does not have a built-in tuple type
 - `scala.Tuple2` class
 - `new Tuple2(elem1, elem2)`

The contents of this slide-set are based on the following references
