Flooding can lead to loops!
 ○ Packet continues to circulate in network forever
 ○ Can be a large issue in networks due to overflow of packets constantly looping the network
 ○ Switches sometimes need to broadcast frames
 ■ Upon receiving frame with unfamiliar destination
 ■ Upon receiving a frame sent to the broadcast address

Broadcasting is implemented by flooding

Flooding can lead to forwarding loops
 ○ Ex: if the network contains a cycle of switches
 ○ Either accidentally or by design for higher reliability

Time to leave: carried on every internet (IP) packet
 ○ Used to drop packet after it has lived too long within the network (due to loops)

Spanning Tree Algorithm:
 ○ Ensure the topology of the network has no loops (create spanning tree)
 ■ Avoid using some of the links when flooding
 ■ Avoid forming a loop!
 ■ If edge can be reached by another destination due to another edge = there is a loop possibility (we want to prevent this)
 ○ Spanning tree:
 ■ Subgraph that covers all vertices, but contains no cycles
 ● Minimum spanning tree creation where edges are marked as “not used” to remove tree cycles
 ■ Since a network is dynamic, this algorithm will be running continuously and independently on each node.
 ● Fix when a node goes down, another is added, etc.
 ■ Each edge is given a weight of “1” when a node is directly accessible
 ■ Nodes are given numbers to be reached in a specific order (1, 2, 3, …, n)
 ● In networking, can be MAC address
 ■ Once stabilized, The edges to to be used will be marked.
• **Constructing a Spanning Tree:**
 - Need a distributed algorithm
 - Switches (nodes) cooperate to build the spanning tree
 - **Key ingredients of the algorithm:**
 - Switches need to elect a “root”
 - The switch with the smallest identifier
 - *Root election algorithm*
 - If A has a smaller identifier than B, B will recognize A as the “root”
 - Each switch identifies if its interface is on the shortest path from the root
 - Analyze all paths, choose path with smallest identifier total
 - Described as “hops” in class
 - Messages (Y, d, X)
 - From node X
 - Claiming Y is the *root*
 - *Distance* is d from *root*
 - Initially, each switch thinks it is the root
 - Switch sends a message out every interface
 - The switch then identifies itself as the root with *distance 0*
 - Ex: Switch X announces (X, 0, X)
 - Switches update their view of the root
 - Upon receiving message, check root ID
 - If the new ID is smaller, start viewing that switch as root
 - Switches compute their distance from a neighbor

• **Robust Spanning Tree algorithm:**
 - Algorithm must elect new root node with lowest identifier upon failure
 - When other switches fail, need to re-compute the entire spanning tree
 - Section 3.2.2 in textbook!

• **Evolution toward virtual LANs:**
 - Cables snaked through buildings
 - Every computer the cables passed was plugged in
 - All people were put on same LAN!
 - Whether they belonged to the network or not
 - **More recently:**
 - Hubs and switches changed all of that
 - Central wiring closets
 - Multiple LANs (k hubs) connected to network
Why group LAN by organizational structure?
- Security
 - Ethernet is a shared media
 - Isolating traffic on separate LANs improves security
 - Load: Load Balancing.
 - Organizational changes are frequent

CS315 lab is a part of the CS LAN network, however, it is on its own Virtual LAN (VLAN)

VLANs
- Bridges/switches need configuration tables
 - Which VLANs are accessible via which interfaces
- Each interface has a VLAN color
- Each MAC address has a VLAN color
- Change the Ethernet header
 - Adding a field for a VLAN tag
 - Implemented on bridges/switches

Moving from switches to routers:
- Advantages of switches over routers:
 - Plug-and-play
 - Fast filtering and forwarding of frames
- Disadvantages of switches over routers:
 - Topology is restricted to a spanning tree
 - Large networks require ARP table

Addressing:
- IP Address:
 - Dotted-quad notation (IPv4)
 - 32-bit unique number
 - Bit string is partitioned into four 8-bit long sections
 - IP prefixes for aggregation
- The internet is a “network of networks”
 - LAN (local area network) connected to router connected to WAN (wide area network)
 - Routers connect networks together, not hosts!
- IP Prefixes:
 - Divided into network and host portions (left and right)
 - All machines on same LAN have same network portion of bits
 - Host parts differ among machines
 - Ex: 12.34.158.0/24 is a 24-bit prefix(network address) with 2^8 addresses
○ **Subnet Mask:**
 - Size of network IP prefix
 - Create a value (all 1s on network part and all 0s on host part)
 - Ex: 11111111 11111111 11111111 00000000
 - 255.255.255.0
 - Will mask away the host portion of the address
 - Leaves the network portion as is
 - Used in packet forwarding