Project User Groups

Learning objectives:

1. Better understand what makes a good set of users
2. Gain information about projects from other universities
Project User Groups

• *Special populations* are *strictly* off-limits
 – Minors
 – Medical patients
 – Individuals with mental disabilities or who otherwise cannot provide informed consent
 – Prisoners

• If you are likely to encounter sensitive personal, private information (e.g., in a hospital), you are not likely to be able to study this group
Good User Groups

Ideal user groups are people who must accomplish a very *specific, specialized* task under time constraints.

Performance can be measured

Experts with specialties are the best.

Desirable if they must have at least a university-level degree to perform their duties.

Individuals do not need to currently use a computer.

Choose people with whom you can interact throughout the term.

People located nearby are *good*.
“Bad” User Groups

Anyone with a fuzzy, undefined, hazy job/task whose performance cannot easily be assessed

Any activity in which anyone could participate without any training

Anyone like yourself

Some specific groups off-limits:

 - Tourists

 - Artists, musicians
Project: Examples

Jump: Tangible user interface to support architectural technologists

(University of Waterloo, 2007)
Architectural drawings have a different physical diagram for each type of information (e.g. mechanical, electrical, general layout). On startup, Jump loads the general layout diagram, then the user can add filters on their workspace and the system will overlay the appropriate information on the display.

Abstract: ... “Specifically, Jump allows a user to obtain additional information related to a given architectural document by *framing* a portion of the drawing with physical brackets. The framed area appears in a magnified view on a separate display and applies the principle of *semantic zooming* to determine the appropriate level of detail to show. *Filter tokens* can be placed on the paper to modify the digital presentation to include information not on the original drawing itself, such as electrical, mechanical, and structural information related to the given space. These filter tokens serve as *tangible sliders* in that their relative location on the paper controls the degree to which their information is blended with the original document. To address the issue of recognition errors, Jump introduces the notion of a *reflection window*, or an inset window that serves to reproduce Jump’s current interpretation of the visual scene. The system’s overall design is informed by a set of *in situ* studies of architectural technologists and formative evaluations with the same group.”
Project: Examples

Pedals: Tablet-based application to support competitive cyclists
Scripting support for Microbiology research using large data sets and non-streamlined bioinformatics methodologies (CS464, 2016)
This project was to help microbiology students create scripts to analyze large datasets in cases where they couldn’t use existing scripts to analyze the data. The original process was manual and subject to error, and the analyses took a long time to run, clearly not a winning combination.
PROJECT Example

A PROPOSAL ...

Example Proposal (partial – B, C, and D likely need more detail):
A. Project team members are Dr. Georg and Guru.
B. Our potential users are competitive cyclists involved in bike clubs in the FC area, specifically the FC Cycling Club and the Overland Mountain Bike Club of which some of us are members.
C. Our plan is to study how the competitive members of these clubs keep track of their training. We’ve noticed people taking small pieces of paper out of their bags and making notes when we finish a ride, so it seems that there may be good opportunities for automation using mobile devices.
D. Our initial contacts are that we’ve talked with 5 people and they are open to allowing us to study them. We made it clear that this is a class project and the result would be a prototype user interaction, not a delivered system. We told them we’d need to work with them 3 or 4 times over the semester, but that it shouldn’t take more than 4 hours of their time total.
PROJECT Example

... and 3 parts:

Part 1 – includes field observations, interpretation sessions that create work models, our consolidated work models, and personas we created; our presentation is an e-poster slide with the sections for the deliverables

Fonts have to be big enough to be read from the last row and the colors have to be readable! NOT TOO DENSE!

Part 2 – includes our vision, storyboard scenarios for our personas, and multiple low fidelity prototypes, with a 3 min video of everything the user can do with the proposed system using the storyboard sketches; our presentation is an e-poster slide with the sections for the deliverables

Part 3 – includes how we evaluated our design prototype (methods, with whom), the results and how we incorporated them into the final interaction design; our high fidelity prototype – screen mockups for mobile and tablet and desktop devices and a 5-10 min video of the interactions; our presentation is an e-poster slide with the sections for the deliverables
Comprehensive Class Projects

These are more comprehensive class projects from other universities. All claim to use contextual inquiry (not explained well in any of these projects) and design, in addition to creating personas. The websites are very informative and can give you good ideas of what is possible for your project.

Lindt Café app design: http://www.kimanhho.com/lindtcafe/

HK Tramways app design: http://uxding.com/case-study-HKT.html

Storeefy app design: http://pallavi05g.github.io/storeefy.html