
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

Chapter 6 B

Parallel Processors from

Client to Cloud

Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 2

§
6
.5

 M
u
ltic

o
re

 a
n
d
 O

th
e
r S

h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Example: Sum Reduction

 Sum 100,000 numbers on 100 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 99

 Partition 1000 numbers per processor

 Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 3

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 4

History of GPUs

 Early video cards

 Frame buffer memory with address generation for

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 5

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 6

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language
(HLSL)

 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 7

Example: NVIDIA Tesla

Streaming

multiprocessor

8 × Streaming

processors

Chapter 6 — Parallel Processors from Client to Cloud — 8

Example: NVIDIA Tesla

 Streaming Processors

 Single-precision FP and integer units

 Each SP is fine-grained multithreaded

 Warp: group of 32 threads

 Executed in parallel,
SIMD style
 8 SPs

× 4 clock cycles

 Hardware contexts
for 24 warps
 Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 9

Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 10

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 11

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 12

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 13

i7-960 vs. NVIDIA Tesla 280/480
§
6
.1

1
 R

e
a
l S

tu
ff: B

e
n
c
h
m

a
rk

in
g
 a

n
d
 R

o
o
flin

e
s
 i7

 v
s
. T

e
s
la

Chapter 6 — Parallel Processors from Client to Cloud — 14

Pitfalls

 Not developing the software to take

account of a multiprocessor architecture

 Example: using a single lock for a shared

composite resource

 Serializes accesses, even if they could be done in

parallel

 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 15

Concluding Remarks

 Goal: higher performance by using multiple

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a

good match

 Performance per dollar and performance per

Joule drive both mobile and WSC

§
6
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 6 — Parallel Processors from Client to Cloud — 16

