
11/4/16	

1	

GPU Compu*ng is everywhere!

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

GPU in a HPC system

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

11/4/16	

2	

GPU in a HPC system

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

GPU in a HPC system

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

11/4/16	

3	

GPU in a HPC system

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

GPU in a HPC system

h'p://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1	

11/4/16	

4	

Why do we need a GPU????

Difference between a CPU and GPU

• Both	cater	to	different	needs	à	Low	Latency	or	High	Throughput?		

CPU	 GPU	

11/4/16	

5	

Difference between Mul*core CPU and Many-
core GPU

h'p://image.slidesharecdn.com/2009-07-22cuda-techtalk-090723122825-phpapp01/95/tech-talk-nvidia-cuda-7-728.jpg?cb=1248687043	

HPC Machines in CS Labs
Name	 GPUs	

bentley	 GF119	[NVS	315]	and	GM204	[GeForce	GTX	980]	

bugatti	 GF119	[NVS	315]	and	GM204	[GeForce	GTX	980]	

ferrari	 GF119	[NVS	315]	and	GM204	[GeForce	GTX	980]	

jaguar	 GF119	[NVS	315]	and	GM204	[GeForce	GTX	980]	

lamborghini	 GF119	[NVS	315]	and	GM200	[GeForce	GTX	TITAN	X]	

lotus	 GF119	[NVS	315]	and	GM200	[GeForce	GTX	TITAN	X]	

maserati	 GF119	[NVS	315]	and	GM200	[GeForce	GTX	TITAN	X]	

porsche	 GF119	[NVS	315]	and	GM200	[GeForce	GTX	TITAN	X]	

raspberries	 G96GL	[Quadro	FX	580]	

11/4/16	

6	

Features of the Graphics card GeForce	GTX	980

GPU	Architecture		 Maxwel	

GPU	Name		 GM204	

CUDA	Cores	 2048	

Clock	Speed	 1126	MHz	

VRAM	 4	GB	GDDR5	

Memory	Bus	 256-bit	

Memory	Clock	 7.0	GHz	

Memory	Bandwidth	 224.0	GB/s	

Power	Connectors	 Two	6-Pin	

Processing Flow:

11/4/16	

7	

Processing Flow(contd.):

Processing Flow(contd.):

11/4/16	

8	

GPU Architecture

GPU Architecture : Two Main Components
1.   Global	Memory:	
-Accessible	by	both	GPU	and	CPU	
-Analogous	to	RAM	in	a	CPU	server	
	
2.	Streaming	MulGprocessors	(SMs):	
-Perform	the	actual	computa[ons	
Each	SM	has	its	own:	
Control	units,	registers,	execu[on	pipelines,	caches	
	

11/4/16	

9	

GPU Architecture –Fermi: Streaming
Mul*processor

•  32	CUDA	Cores	per	SM	
	32	fp32	ops/clock	
	16	fp64	ops/clock	
	32	int32	ops/clock	

•  2	warp	schedulers	
	Up	to	1536	threads	concurrently	

•  4	special-funcGon	units	
•  64KB	shared	mem+	L1	cache	
•  32K	32-bit	registers	
•  Register	File

GPU Architecture –Fermi : CUDA Core
Floa*ng

Core
•  Floating point & Integer unit

 IEEE 754-2008 floating-point standard
 Fused multiply-add (FMA) instruction for both
 single and double precision

•  Logic unit
•  Move, compare unit
•  Branch unit

11/4/16	

10	

Memory System-- Architecture

Shared	memory(L1)	
• User-managed	scratch-pad	
• Hardware	will	not	evict	un[l	threads	overwrite	
•  16	or	48KB	/	SM	(64KB	total	is	split	between	Shared	and	L1)	
• Aggregate	bandwidth	per	GPU:	1.03	TB/s	
	
ECC	Protec[on	can	be	enabled.	

CUDA Programming
Abstrac*ons

Shivani Dave

11/4/16	

11	

CUDA Applica*on structure:

Serial	code	executes	in	a	host	
(CPU)	thread	
	
Parallel	code	executes	in	many	
device	(GPU)	threads	across	
mulGple	processing	elements	

Threads

11/4/16	

12	

Threads are grouped into blocks

•  A	kernel	is	executed	as	a	grid	of	blocks	of	threads	

Kernel Execu*on

Each	thread	is	executed	by	a	core	
CUDA		

--Each	block	is	executed	by	one	SM	and	does	not	migrate	
--Several	concurrent	blocks	can	reside	on	one	SM	
depending	on	the	blocks’	memory	requirements	and	the	
SM’s	memory	resources	

--Each	kernel	is	executed	on	one	device	
--Mul[ple	kernels	can	execute	on	a	device	at	one	[me	in	
an	asynchronous	way	

11/4/16	

13	

Memory Model
Device	Code:	
R/W	per-thread	registers	
R/W	per-thread	local	memory	
R/W	per-block	shared	memory	
R/W	per-grid	global	memory	
Read	only	per-grid	constant	
	
Host	Code:	
Transfer	data	to/from	per-grid	
Global	and	Constant	memories	

	

Threads	 Registers	and	Local	Memory	

Block	of	Threads	 Shared	Memory	

All	the	blocks	 Global	Memory	

Memory Model (contd …)

• Global	memory	is	the	slowest	memory	on	the	GPU		
• Coalescing	improves	memory	performance;	it	occurs	when	mul[ple	
(row	major	order)	consecu[ve	threads	(IDs)	read	/	write	consecu[ve	
data	items	from	/	to	global	memory		

•  16	(half	a	warp)	global	array	elements	are	accessed	at	once:	
coalescing	produces	vectorized	reads	/	writes	that	are	much	faster	
than	element	wise	reads	/	writes.	

• A	warp	in	CUDA,	is	a	group	of	32	threads,	which	is	the	minimum	size	
of	the	data	processed	in	SIMD	fashion	by	a	CUDA	mul[processor.	

	

11/4/16	

14	

Sequen*al C code -> Vector Addi*on

Parallelism and Threads
•  To	process	opera[ons	in	parallel,	the	opera[ons	must	be	independent	of	each	other	i.e.,	no	data	
dependencies	

•  A	thread	is	mapped	to	a	single	processor	which	executes	in	parallel	with	the	remaining	threads.	
•  A	CUDA	kernel	is	executed	by	a	grid	(array)	of	threads	with	each	thread	with	a	unique	index	id	in	a	
specific	block.	

•  A	grid	is	organized	as	a	2D	array	of	blocks	(gridDim.x	and	gridDim.y)		
•  Each	block	is	organized	as	3D	array	of	threads	(blockDim.x,	blockDim.y,	and	blockDim.z)		

gridDim	=	(3,2)	
blockDim	=	(2,2,1)	

11/4/16	

15	

Thread Alloca*on

• A	thread	block	can	be	allocated	on	any	stream	mul[processor	and	
thread	blocks	must	be	independent	of	each	other,	i.e.,	cannot	
communicate	with	each	other	at	all.	

		–	pro:	now	the	computa[on	can	run	on	any	number	of	SMs	
	–	con:	this	makes	programming	a	GPU	harder		

• Mul[ple	thread	blocks	can	be	scheduled	on	one	mul[processor,	if	
resources	allow	it.	They	s[ll	are	independent	of	each	other.		

Thread Synchroniza*on

•  Threads	inside	one	thread	block	can	synchronize	–	_syncthreads()	
command		

• host	can	synchronize	kernel	calls	–	either	explicitly	through	
cudaThreadSynchronize()	–	or	implicitly	through	memcpy()-s		

11/4/16	

16	

Parameterizing the thread code

•  The	programmer’s	job	is	to	write	the	code	so	that	
when	a	collec[on	of	threadblocks,	each	with	a	
collec[on	of	threads	executes	in	concert,	the	collec[ve	
work	done	solves	the	problem.	

•  But	there	is	only	one	piece	of	code	(what	it	does	is	a	
func[on	of	the	grid	and	thread	“coordinates.”	

•  GridIdx.x,	GridIdx.y	
•  threadIdx.x,	threadIdx.y,	threadIdx.z	

•  In	our	first	example,	there	is	just	one	block	which	has	
256	threads	in	it:	all	but	threadIdx.x	are	zero,	and	
unused.	

•  So,	we	will	have	all	values	from	0	to	255	
•  Analogy	with	OpenMP/MPI:	

•  Dim	is	line	num_threads(),	and	MPI_Size	
•  Ids	is	like	thread_num()	and	MPI_rank	

©h'ps://class.coursera.org/hetero-004/lecture/105	

Mul*ple Blocks

©h'ps://class.coursera.org/hetero-004/lecture/105	

Mul[ple	block	in	the	Grid.	
Each	block	will	have	an	equal	number	of	threads	as	defined	in	the	program.		
In	the	above	example:	blockIdx.x	keeps	on	increasing	from	0	to	255	similar	to	the	threadId.x	.	The	variable	blockDim.x	will	
be	256	which	is	equal	to	the	number	of	blocks.	

11/4/16	

17	

Program Flow

GPU(Device)	CPU(Host)	

Serial	Code(Sequen[al)	

Parallel	Code(Call	to	the	kernel)	

Serial	Code(Sequen[al)	

Grid	

Blocks	1….n	
Threads	1…n	Device’s	

memory		
Host’s	
memory		

Memcpy	
funcGon	

Vector Addi*on Map

Range	of	variable	I	
0	to	255	
0……….255	

Vectors	A,	B	and	C	
Func[on	used	f(i)	

……255	

i	will	be	mapped	as	a	
f(ThreadId)	
…..255	

	

Itera[on	Space	 Data	Space	 Thread	Space	

1:1	Mapping	

There	exists	a	1:1	mapping	between	the	iterator	variable	and	the	ThrThere	
exists	only	one	block	each	being	mapped	to	a	set	of	255	threadseadId.	
.	

11/4/16	

18	

Parallel CodeàVector Addi*on
#include<cuda.h>	
void	main(){	
int	n=256;	int	b[n];	int	a[n],c[n];	//ini[alize	the	arrays	too	
int	*dev_b;	int	*dev_a,	int	*dev_c;	
cudaMalloc((void**)&dev_a,	n*sizeof(int));	
cudaMalloc((void**)&dev_b,	n*sizeof(int));	
cudaMalloc((void**)&dev_c,	n*sizeof(int));	
cudaMemcpy(dev_a,	&a,	n*sizeof(int),	cudaMemcpyHostToDevice);	
cudaMemcpy(dev_b,	&b,	n*sizeof(int),	cudaMemcpyHostToDevice);	
dim3	gridDim	=	1;//Number	of	blocks	in	the	grid	
dim3	blockDim	=n;//Number	of	threads	in	each	block	
Addi[on_Vector<<<gridDim,blockDim>>>(dev_a,dev_b,dev_c);//	Call	to	the	device	
cudaMemcpy(&c,	dev_c,	n*sizeof(int),	cudaMemcpyDeviceToHost);	
}	

Kernel defini*on

__global__	void	AddIntegers(int	*a,	int	*b,int	*c)	
{	
	
			c[threadIdx.x]=a[threadIdx.x]+b[threadIdx.x];	
}	

__global__	lets	the	compiler	know	that	it	is	a	kernel	func[on	and	accordingly	appropriate	ac[ons	will	be	taken	
	
Call	to	the	kernel	from	the	host	is	made	using	the	below	format:	
<<<number	of	blocks,	number	of	threads>>>	
	

11/4/16	

19	

Built-in Variables

•  In	the	kernel	a	set	of	built-in	variables	specifies	the	grid	and	block	
dimensions	(Dim)	and	indices	(Idx).	

•  These	can	be	used	to	determine	the	thread	ID		
	–	gridDim	contains	.x	and	.y	grid	dimensions	(sizes)		
	–	blockIdx	contains	block	indices	.x	and	.y	in	the	grid	
	–	blockDim	contains	the	thread	block	.x,	.y,	.z	dimensions	(sizes)	 	–	

threadIdx	contains	.x,	.y	and	.z	thread	block	indices		
•  1D	thread	block:	ID	=	threadIdx.x		
•  2D	thread	block:	ID	=	threadIdx.x	+	threadIdx.y*blockDim.x		
•  3D	thread	block:	ID	=	threadIdx.x	+	threadIdx.y*blockDim.x	+	
threadIdx.z*blockDim.x*blockDim.y	

API func*ons in CUDA

•  	Device	Memory	Alloca[on	func[on	
• Host-Device	Data	/transfer	

11/4/16	

20	

Device Memory Alloca*on func*on

cudaMalloc()	
•  Similar	to	Malloc	func[on	in	C		
•  It	will	allocate	memory	in	the	GPU’s	global	memory.	

•  Two	parameters	

1.	Address	of	a	pointer	to	the	allocated	object	
2.	Size	of	allocated	object	in	terms	of	bytes	

cudaFree()	
•  Frees	object	from	device	global	memory	

•  Parameter	-	Pointer	to	freed	object	

Host-Device Data /transfer

cudaMemcpy()	
--Used	for	memory	data	transfer	
Parameters:	
1.  Pointer	to	des[na[on	
2.  Pointer	to	source	
3.  Number	of	bytes	copied	
4.  Type	of	transfer	
There	are	4	types	of	data	transfer:	
-Host	to	Host	
-Host	to	Device	
-Device	to	Host	
-Device	to	Device	
All	these	data	transfers	are	asynchronous.	

11/4/16	

21	

Programming Examples

2D Grid Block

• Cuda	allows	us	to	create	1-D,2-D,3-D	grid	blocks	
•  2-D	Kernel	Launch:	
•  Image	processing	tasks	typically	impose	a	regular	2D	raster	(an	
image)	over	the	problem	domain.	Computa[onal	Fluid	
dynamics	tasks	might	be	most	naturally	expressed	by	par[[oning	a	
volume	over	a	3D	grid.	

11/4/16	

22	

2-D Representa*on Program

•  2-D	mapping		

Vector Addi*on Map

Range	of	variable	i	
Range	of	variable	j	

0….255	
0….255	

Vectors	A(2-D	array),	C	
Func[on	used	f(I,j)	

……	

i	and	j	will	be	mapped	as	a	
f(,BlockIdThreadId,	BlockId)	

…..16	
…16	

Itera[on	Space	 Data	Space	 Thread	Space	

2:1	Mapping	

There	exists	a	2:1	mapping	between	the	iterator	variable	i,	j	and	the	
ThreadId	for	every	BlockId	
There	exists	16	blocks	each	being	mapped	to	a	set	of	2	values	in	x	and	y	
direc[on	

11/4/16	

23	

Matrix Mul*plica*on

•  Consider	two	Matrices	M	and	N.	We	need	to	store	the	result	in	P	
•  Execu[ng	on	the	host:	
•  void	MatrixMulOnHost(float*	M,	float*	N,	float*	P,	int	Width)	
•  {	
•  	for	(int	i	=	0;	i	<	Width;	++i)	
•  	for	(int	j	=	0;	j	<	Width;	++j)	{	

	double	sum	=	0;	
	for	(int	k	=	0;	k	<	Width;	++k)	{	

	double	a	=	M[i	*	Width	+	k];	
	double	b	=	N[k	*	Width	+	j];	
	sum	+=	a	*	b;}	

									P[i	*	Width	+	j]	=	sum;}	
•  }	

Cuda Code:

11/4/16	

24	

Kernel Code

Programming Example-Jacobi1D.cu

11/4/16	

25	

References:

• h'p://www.cc.gatech.edu/~ve'er/keeneland/
tutorial-2011-04-14/02-cuda-overview.pdf	

• h'ps://class.coursera.org	
• Programming	Massively	Parallel	Processors	-	David	B.	Kirk	and	Wen-
mei	W.	Hwu	

• h'p://docs.nvidia.com/cuda/parallel-thread-execu[on/
#axzz3p0rtlrXV	

• h'ps://code.google.com/p/stanford-cs193g-sp2010/wiki/
TutorialMul[dimensionalKernelLaunch	

