11/4/16

GPU Computing is everywhere!

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

11/4/16

GPU in a HPC system

?;,

Ok Ridg al Laboratory Tour - Upgrading to Tesla K20 e

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

its DRAM on the
main board

?/',

~Oak Ridg ol Laboratory Tour - Upgrading to Tesla K20 GP

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

GPU in a HPC system

11/4/16

Host system has
its DRAM on the
main board

?/',

al Laboratory Tour - Upgrading to Tesla K20 GP

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

Host system has
its DRAM on the
main board

own

il Laboratory Tour - Upgrading to Tesla K20 (;P

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1

11/4/16

Why do we need a GPU????

Difference between a CPU and GPU

* Both cater to different needs - Low Latency or High Throughput?

100s of ALUs

100s of ALUs

Difference between Multicore CPU and Many-

core GPU

GFLOPS

3004

200

100

INV3
01= T
Jan Jun

2003

G80GL
GS8O0

3.0 GHz
Intel Corg2 Duo

May Nov Mar Nov
2005 2006

Manycore GPU

AEEEEEEE EEEEEEER
] EER

11/4/16

http://image.slidesharecdn.com/2009-07-22cuda-techtalk-090723122825-phpapp01/95/tech-talk-nvidia-cuda-7-728.jpg

HPC Machines in CS Labs

Name
bentley
bugatti
ferrari
jaguar
lamborghini
lotus
maserati
porsche

raspberries G96GL [Quadro FX 580]

Features of the Graphics card

GPU Architecture
GPU Name

CUDA Cores

Clock Speed

VRAM

Memory Bus
Memory Clock
Memory Bandwidth

Power Connectors

Maxwel
GM204
2048

1126 MHz

4 GB GDDRS5
256-bit

7.0 GHz
224.0 GB/s
Two 6-Pin

Processing Flow:

CPU Memory

[INNRRRNNNRNENN

[T

11/4/16

Processing Flow(contd.):

GigaThread™

A~

PCle Bus

CPU Memory

T T

[T

[T T

i

GigaThread™

| CPU | T T

Bridge
l I PCle Bus } I I

JUTIT

CPU Me Y

[Ty
/
A
[T T T

LTI

| 2

DRAM

11/4/16

11/4/16

GPU Architecture

GPU Architecture : Two Main Components

1. Global Memory:
-Accessible by both GPU and CPU
-Analogous to RAM in a CPU server

DRAM I/F
41 Wvda

2. Streaming Multiprocessors (SMs):

-Perform the actual computations

Each SM has its own:

Control units, registers, execution pipelines, caches

41 Wv¥a

DRAMUF Tl eBLLL:| HOSTIF
4/l WV

4/l Wwa

GPU Architecture —Fermi: Streaming
Multiprocessor

32 CUDA Cores per SM
32 fp32 ops/clock
16 fp64 ops/clock
32 int32 ops/clock
2 warp schedulers
Up to 1536 threads concurrently
4 special-function units
64KB shared mem+ L1 cache
32K 32-bit registers
Register File

GPU Architecture —Fermi : CUDA Core
Floating

Core

* Floating point & Integer unit
IEEE 754-2008 floating-point standard
Fused multiply-add (FMA) instruction for both
single and double precision

* Logic unit

* Move, compare unit

« Branch unit CUDA Core

Operand Collector
{

2 £

l Result Queue

JInstruction Cache
| poeaer
20 -

1 RegisterFile
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

oad/Store Units x 1

Iioroon nect Network

K Configurable
(ilchelshared Mem

LUniform Cache

11/4/16

11/4/16

Memory System-- Architecture

Shared memory(L1)

* User-managed scratch-pad

* Hardware will not evict until threads overwrite

* 16 or 48KB / SM (64KB total is split between Shared and L1)
» Aggregate bandwidth per GPU: 1.03 TB/s

ECC Protection can be enabled.

CUDA Programming
Abstractions

Shivani Dave

11/4/16

CUDA Application structure:

Serial code executes in a host CUDA C/C++ Application

e =
Serial code ?

Parallel code executes in man Device = GPU
device (GPU) threads across Parallel code - - -
multiple processing elements
Host = CPU
serial c°de —’
Device = GPU
e — EEEE B
s

11

11/4/16

Threads are grouped into blocks

r

* Akernel is executed as a grid of blocks of threads

Kernel Execution

Each thread is executed by a core
CUDA thread CUDA core CUDA

§ ﬂ

. --Each block is executed by one SM and does not migrate
CUDA Streaming .
CUDA thread block Multiprocessor --Several concurrent blocks can reside on one SM

depending on the blocks’ memory requirements and the
- ﬂ ﬂ ﬂ [l SM’s memory resources

CUDA-enabled GPU Each k li ted devi
CUDA kemnel grid --Each kernel is executed on one device

--Multiple kernels can execute on a device at one time in

-- - B o aSynChronous ey

11/4/16

Memory Model

Device Code:

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory

R/W per-grid global memory Shared Memory Shared Memory

Read only per-grid constant
Host Code: $ I $ I ? I ? I
Transfer data to/from per-grid Thread (0, 0)|| Thread (1,0) | | Thread (0, 0) | Thread (1, 0)

Global and Constant memories I I I I

Global
Memory

(Device) Grid

Block (0, 0) Block (1, 0)

Block of Threads Shared Memory . ﬁ::ls::t

All the blocks Global Memory

Memory Model (contd ...)

* Global memory is the slowest memory on the GPU

* Coalescing improves memory performance; it occurs when multiple
(row major order) consecutive threads (IDs) read / write consecutive
data items from / to global memory

* 16 (half a warp) global array elements are accessed at once:
coalescing produces vectorized reads / writes that are much faster
than element wise reads / writes.

* A warp in CUDA, is a group of 32 threads, which is the minimum size
of the data processed in SIMD fashion by a CUDA multiprocessor.

13

11/4/16

Seﬂquential C code -> Vector Addition

Addition Vector (*a, *b, *c)

Addition Vector(a,b,c);
for(i=0;i<25;1i++)
printf ((Clil);

Parallelism and Threads

To process operations in parallel, the operations must be independent of each other i.e., no data
dependencies

A thread is mapped to a single processor which executes in parallel with the remaining threads.

A CUDA kernel is executed by a grid (array) of threads with each thread with a unique index id in a
specific block.

A grid is organized as a 2D array of blocks (gridDim.x and gridDim.y)
Each block is organized as 3D array of threads (blockDim.x, blockDim.y, and blockDim.z)

‘ . gridDim = (3,2)

blockDim =(2,2,1)

11/4/16

Thread Allocation

* A thread block can be allocated on any stream multiprocessor and
thread blocks must be independent of each other, i.e., cannot
communicate with each other at all.

— pro: now the computation can run on any number of SMs
— con: this makes programming a GPU harder

* Multiple thread blocks can be scheduled on one multiprocessor, if
resources allow it. They still are independent of each other.

Thread Synchronization

* Threads inside one thread block can synchronize — _syncthreads()
command

* host can synchronize kernel calls — either explicitly through
cudaThreadSynchronize() — or implicitly through memcpy()-s

11/4/16

Parameterizing the thread code

L o[1] 2 |[254]255]

The programmer’s job is to write the code so that
when a collection of threadblocks, each with a
collection of threads executes in concert, the collective
work done solves the problem.
But there is only one piece of c?lde (what it d?es isa Cli] = Ali] + B
function of the grid and thread “coordinates.

e Gridldx.x, Gridldx.y

¢ threadldx.x, threadldx.y, threadldx.z
In our first example, there is just one block which has
256 threads in it: all but threadldx.x are zero, and
unused.
So, we will have all values from 0 to 255
Analogy with OpenMP/MPI:

¢ Dim is line num_threads(), and MPI_Size

e Idsis like thread_num() and MPI_rank

threadldx.x;

Multiple Blocks

Thread Block 0 Thread Block 1 Thread Block N-1
0| 1| 2 ||254][255|| o | 1 | 2 |[254]255] [0] 1] 2 |]|254] 255

I'= blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threaclldx x; threadldx.x; threadldx.x;
Cli] = A[i] + Bi]; C[i] = A[i] + BI[i]; C[i] = Ali] + BI[i];

Multiple block in the Grid.

Each block will have an equal number of threads as defined in the program.

In the above example: blockldx.x keeps on increasing from 0 to 255 similar to the threadld.x . The variable blockDim.x will
be 256 which is equal to the number of blocks.

©https://class.coursera.org/hetero-004/lecture/105

16

11/4/16

Program Flow

Vector Addition Map

1:1 Mapping

Iteration Space Data Space Thread Space

There exists a 1:1 mapping between the iterator variable and the ThrThere
exists only one block each being mapped to a set of 255 threadseadlId.

17

11/4/16

Parallel Code=>Vector Addition

#include<cuda.h>

void main(){

int n=256; int b[n]; int a[n],c[n]; //initialize the arrays too

int *dev_b; int *dev_a, int *dev_c;

cudaMalloc((void**)&dev_a, n*sizeof(int));
cudaMalloc((void**)&dev_b, n*sizeof(int));
cudaMalloc((void**)&dev_c, n*sizeof(int));

cudaMemcpy(dev_a, &a, n*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, n*sizeof(int), cudaMemcpyHostToDevice);
dim3 gridDim = 1;//Number of blocks in the grid

dim3 blockDim =n;//Number of threads in each block
Addition_Vector<<<gridDim,blockDim>>>(dev_a,dev_b,dev_c);// Call to the device
cudaMemcpy(&c, dev_c, n*sizeof(int), cudaMemcpyDeviceToHost);

}

Kernel definition

__global__ void AddIntegers(int *a, int *b,int *c)
{

c[threadldx.x]=a[threadldx.x]+b[threadldx.x];

__global__lets the compiler know that it is a kernel function and accordingly appropriate actions will be taken

Call to the kernel from the host is made using the below format:
<<<number of blocks, number of threads>>>

Built-in Variables

* In the kernel a set of built-in variables specifies the grid and block
dimensions (Dim) and indices (ldx).

* These can be used to determine the thread ID
— gridDim contains .x and .y grid dimensions (sizes)
— blockldx contains block indices .x and .y in the grid

— blockDim contains the thread block .x, .y, .z dimensions (sizes)
threadldx contains .x, .y and .z thread block indices

* 1D thread block: ID = threadldx.x
* 2D thread block: ID = threadldx.x + threadldx.y*blockDim.x

* 3D thread block: ID = threadldx.x + threadldx.y*blockDim.x +
threadldx.z*blockDim.x*blockDim.y

API functions in CUDA

* Device Memory Allocation function
* Host-Device Data /transfer

11/4/16

Device Memory Allocation function

cudaMalloc()

¢ Similar to Malloc function in C

* It will allocate memory in the GPU’s global memory.
* Two parameters
1. Address of a pointer to the allocated object

2. Size of allocated object in terms of bytes

cudaFree()
* Frees object from device global memory

* Parameter - Pointer to freed object

Host-Device Data /transfer

cudaMemcpy()
--Used for memory data transfer
Parameters:
Pointer to destination
Pointer to source
Number of bytes copied
Type of transfer
There are 4 types of data transfer:
-Host to Host
-Host to Device
-Device to Host
-Device to Device
All these data transfers are asynchronous.

11/4/16

11/4/16

Programming Examples

2D Grid Block

* Cuda allows us to create 1-D,2-D,3-D grid blocks

e 2-D Kernel Launch:

* Image processing tasks typically impose a regular 2D raster (an
image) over the problem domain. Computational Fluid
dynamics tasks might be most naturally expressed by partitioning a

volume over a 3D grid.

11/4/16

2-D Representation Program

* 2-D mapping

array[index]

Vector Addition Map

2:1 Mapping

Iteration Space Data Space Thread Space

There exists a 2:1 mapping between the iterator variable i, j and the
Threadld for every Blockld

There exists 16 blocks each being mapped to a set of 2 valuesin x and y
direction

22

11/4/16

Matrix Multiplication

Consider two Matrices M and N. We need to store the result in P
Executing on the host:
void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{
for (inti=0; i< Width; ++i)
for (int j = 0; j < Width; ++j) {
double sum =0;
for (int k = 0; k < Width; ++k) {
double a = M[i * Width + k];
double b = N[k * Width +j];
sum +=a * b;}
P[i * Width +j] = sum;}
*}

Cuda Code:

void MatrixMultiplication{flcat* M, Tloat* N, float* P, int Width)
|

int size = Width * Width * sizeof(float);

float* Md, Nd, Pd;

// Transfer Mand N to device memory
cudaMalloc((void**) &Md, size};
cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
cudaMalloc((void**) &Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allecate Pon the device
cudaMalloc((void**) &Pd, size);

/ Kernel invocation code - to be shown

ransfer P from device to host
cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);
// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
!

23

11/4/16

Kernel Code

Programming Example-JacobilD.cu

24

References:

* http://www.cc.gatech.edu/~vetter/keeneland/
tutorial-2011-04-14/02-cuda-overview.pdf

* https://class.coursera.org

* Programming Massively Parallel Processors - David B. Kirk and Wen-
mei W. Hwu

11/4/16

25

