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Name card info (inside) 
n  Name: Sanjay Rajopadhye 
n  Pronunciation (optional): In Indian names, “a” is almost 

always pronounced as a short “u” sound as in gun, fun, etc., 
or a long “aa” sound as in calm, bard, etc. 
¨  Sanjay is pronounced as Sun-juy 
¨  Rajopadhye Raaj-Oh-paath-yay (in the “paath” make the t sound like a d).  

Don’t worry if you don’t get it right, it’s almost always mispronounced, even 
in India). 

¨  These pronunciation rules are used in many parts of Asia, e.g., pronounce 
“Bagdad?” 

n  Major dept: CS/ECE 
n  Status: Associate Professor (e.g., 3rd year Ph.D.) 
n  Interesting fact: I only recently discovered how thin my 

hair was in the back 
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Bio sketch 
n  Education 

¨  undergrad: B. Tech, IIT Kharagpur, India, 1980 
¨  grad: Ph.D. University of Utah, 1986 

n  Professional: 
¨  Assistant Prof, CS University of Oregon (86-91) 
¨  Assistant Prof, ECE Oregon State University (91-92) 
¨  Researcher/Prof Associé IRISA, Rennes (1993-2001) 
¨  Colorado State University (2001-…) 

n  Research contributions/interests: 
¨  High-performance computing, embedded systems, VLSI, 

algorithms, compilers, programming languages, … 
¨  Polyhedral model: a mathematical framework for describing, 

transforming and “compiling” massively parallel computations 

Teaching Assistant 
n  Name: Swetha Varadarajan 

n  What you want to be called: Swetha 
 

n  Major: ECE 

n  Status: Grad (MS) 

n  Interesting fact: I can play candy crush for 15 
hours straight 
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Topics 

n Answer: Why parallel computing? 
n Overview the types of parallel computing 
n Overview of speedup and efficiency 
n Review the plan for this class 
n  Interactive/Illustrative example 

Why Parallel Programming 
n Need for speed 

¨  Many applications require orders of magnitude 
more compute power than we have right now. 
Speed came for a long time from technology 
improvements, mainly increased clock speed and 
chip density. 

¨  The technology improvements have slowed down, 
and the only way to get more speed is to exploit 
parallelism. All new computers are now parallel 
computers.  
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Technology:  Moore’s Law
n Empirical observation (1965) by Gordon Moore:

n The chip density: number of transistors that can be 
inexpensively placed on an integrated circuit, is 
increasing exponentially, doubling approximately 
every two years.

n  en.wikipedia.org/wiki/Moore's_law
n This has held true until now and is expected to 

hold until at least 2015 (news.cnet.com/New-life-for-
Moores-Law/2009-1006_3-5672485.html).

source:  Wikipedia 
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Corollary of exponential growth
n  When two quantities grow exponentially, but at 

different rates, their ratio also grows exponentially.

n  1.1n ≠  O(2n)
¨ or 2n grows a lot faster than (1.1)n

n  Consequence for computer architecture: growth rate 
for e.g. memory is not as high as for processors, 
therefore, memory gets slower and slower (in terms of 
clock cycles) as compared to processors.  

    This gives rise to so called gaps or walls
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“Gaps or walls” of Moore’s Law
n  Memory gap/wall:

Memory bandwidth and latency improve much 
slower than processor speeds (since mid 80s, this 
was addressed by ever increasing on-chip caches).

n  (Brick) Power Wall�
Higher frequency means more power, i.e., more heat. 
So chips are getting exceedingly hot

     Consequence: We can no longer increase the
     clock frequency of our processors. 
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source: 
The Free  
  Lunch Is Over  
Herb Sutter 
Dr. Dobbs, 2005 

       Enter Parallel Computing

n The goal is to deliver performance.  The only 
solution to the power wall is to have multiple 
processor cores on a chip, because we can still 
increase the chip density. 

n Nowadays, there are no more processors with 
one core.
¨ “The processor is the new transistor.”

n  2005 prediction: Number of cores will continue to grow 
at an exponential rate (at least until 2015), has not 
happened as much as we thought it would. We are still in 
the ~16 cores per micro-processor range. 
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Implicit Parallel Programming 
n  Let the compiler / runtime system detect parallelism, 

do task and data allocation, and scheduling.  
n  This has been a “holy grail” of compiler and parallel 

computing research for a long time and, after >40 
years, still requires research on automatic 
parallelization, languages, OS, fault tolerance, etc. 

n  We still don’t have a general purpose high performance 
implicit parallel programming language that compiles 
to a general purpose parallel machine.

 

 Explicit Parallel Programming 
Let the programmer express parallelism, task and 
data partitioning, allocation, synchronization, 
and scheduling, using programming languages 
extended with explicit parallel programming 
constructs. 
n This makes the  programming task harder, but 

a lot of fun and a large source of income  
n  (very large actually ☺)  
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Explicit parallel programming 
n  Explicit parallel programming 

¨ Multithreading: OpenMP

¨ Message Passing: MPI
¨ Data parallel programming: CUDA

n  Explicit Parallelism complicates programming
¨ creation, allocation, scheduling of processes
¨ data partitioning
¨ Synchronization ( semaphores, locks,  messages )

 

Computer Architectures  

n  Sequential: John von Neumann
¨  Stored Program, single instruction stream, single 

data stream
n  Parallel: Michael Flynn 

¨  SIMD:Single instruction multiple data
n data parallel

¨  MIMD: Multiple instruction multiple data
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SIMD 
n One control unit
n Many processing elements

¨ All executing the same instruction
¨ Local memories
¨ Conditional execution

n  Where ocean perform ocean step
n  Where land perform land step
n  Gives rise to idle processors (optimized in GPUs)

n  PE interconnection
¨ Usually a 2D mesh

SIMD machines 

n Bit level
n  ILLIAC IV (very early research machine, Illinois)
n  CM2 (Thinking Machines)

n  now GPU: Cartesian grid of SMs 
     (Streaming Multiprocessors)

n  each SM has a collection of Processing Elements
n  each SM has a shared memory and a register file

¨ one global memory
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MIMD 
n Multiple Processors

¨  Each executing its own code
n Distributed memory MIMD

¨  Complete ‘PE+Memory’ connected to network
n Cosmic Cube,  N-Cube, our Cray
n Extreme: Network of Workstations,               

Data centers: racks of processors with high speed 
bus interconnects

n Programming model: Message Passing

Shared memory MIMD 
n  Shared memory

¨  CPUs or cores, bus, shared memory
¨  All our processors are now multi-core
¨  Programming model: OpenMP

n NUMA: Non Uniform Memory Access
¨ Memory Hierarchy (registers, cache, local, global)
¨ Potential for better performance, but problem: 

memory (cache) coherence (resolved by 
architecture)
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Clarifying Reading assignments 

1.  Inside Front Cover 
2.  Chapter 3 Parallel Algorithm Design 

Speedup 
n Why do we write parallel programs again? 
       to get speedup: go faster than sequential 
n What is speedup? 
        T1 = sequential time to execute a program 
                sometimes called T, or S 
        Tp = time to execute the same program with  
                 p processors (cores, PEs) 
        Sp = T1 / Tp   speedup for p processors 
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Ideal Speedup, linear speedup 

n  Ideal speedup: p fold speedup:  Sp = p 
¨  Ideal not always possible. WHY? 

n Certain parts of the computation are inherently 
sequential 

n Tasks are data dependent, so not all processors are 
always busy, and need to synchronize 

n Remote data needs communication 
¨  Memory wall PLUS Communication wall 

n  Linear speedup:  Sp = β p 
      β is usually less than 1 
      

Efficiency 
n  Speedup is usually not ideal, nor linear 
n We express this in terms of efficiency Ep: 
      Ep =  Sp / p 
 

¨ Ep defines the average utilization of p processors 
¨ Range? 

n  What does Ep = 1 signify?  
n  What does Ep = β (0<β<1) signify?   
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More realistic speedups 
n  T1 = 1,    Tp = σ + (ο+π)/p 
n  Sp = 1 / (σ + (ο+π)/p ) 
       σ is sequential fraction of the program 
       π is parallel fraction of the program 
                σ+π = 1 
       ο is parallel overhead (does not occur in sequential execution) 

Draw speedup curves for  
    p=1, 2, 4, 8, 16, 32  σ= ¼, ½    ο= ¼, ½  
 When p goes to ∞, Sp goes to? 

   

Amdahl’s Law (from your 
reading)   
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Plotting speedups 
 T1= 1,    Tp=σ+(ο+π)/p 
  Sp= 1/(σ+(ο+π)/p ) 
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p	 Sp	(s:1/4	o:1/4)	 Sp	(s:1/4	o:1/2)	 Sp	(s:1/2	o:1/4)	 Sp	(s:1/2	o:1/2)	

1	 1	 1	 1	 1	

2	 1.33	 1.14	 1.14	 1.00	

4	 2.00	 1.78	 1.45	 1.33	

8	 2.67	 2.46	 1.68	 1.60	

16	 3.2	 3.05	 1.83	 1.78	

32	 3.56	 3.46	 1.91	 1.88	

This class: explicit parallel programming
Class Objectives
n  Study the foundations of parallel programming
n  Write explicit parallel programs

¨  In C plus libraries 
¨ Using OpenMP (shared memory), MPI  (message passing)
   and CUDA (data parallel) 
¨ Execute and measure, plot speedups, interpret / try 

to understand the outcomes  (σ, π, ο), document 
performance
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Class Format

n  Hands on: write efficient parallel code. This often 
starts with writing efficient sequential code.

n  four versions of a code: naïve sequential, naïve 
parallel, smart sequential, smart parallel

n  Lab covers many details, discussions follow up on 
what’s learned in labs. 

n  PAs: Write effective and scalable parallel programs:
¨  report and interpret their performance.

Parallel Programming steps 
n  Partition: break program in (smallest possible) 

parallel tasks and partition the data accordingly. 
n Communicate: decide which tasks need to 

communicate (exchange data). 
n Agglomerate: group tasks into larger tasks 

¨ reducing communication overhead 
¨ taking LOCALITY into account 

n High Performance Computing is  
                          all about locality 
 



16 

Locality 
A process (running on a processor) needs to have its 
data as close to it as possible. Processors have non 
uniform memory access (NUMA): 

n  registers                 0 (extra) cycles 
n  cache                     1,2,3 cycles  
      there are multiple caches on a multicore chip 
n  local memory        50s to 100s of cycles 
n  global memory, processor-processor interconnect, disk … 

Process 
n  COARSE in OS world: a program in execution 
n  FINER GRAIN in HPC world: (a number of) loop 

iterations, or a function invocation 

 
 Exercise: summing numbers 

 
10x10 grid of 100 processors. Add up 4000 numbers 
initially at the corner processor[0,0], processors can 
only communicate with NEWS neighbors 
 
Different cost models: 

¨  Each communication “event” may have an arbitrarily 
large set of numbers (cost independent of volume). 
n  Alternate: Communication cost is proportional to volume 

¨ Cost: Communication takes 100x the time of adding  
n  Alternate: communication and computation take the same time  
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Outline 
n  “scatter”: the numbers to processors row or 

column wise 
¨ Each processor along the edge gets a stack 

n  Keeps whatever is needed for its row/column 
n  Forwards the rest to the processor to south (or east) 
     Initiates an independent “scatter” along its row/column 

n  each processor adds its local set of sums 
n  “gather”: sums are sent back in reverse order of 

scatter and added up along the way 

Broadcast / Reduction 
n  One processor has a value, and we want every 

processor to have a copy of that value. 
n  Grid: Time for a processor to receive the value must be 

at least equal to its distance (number of hops in the grid 
graph) from the source. 

    For the opposite corner, this is the perimeter of the  
    grid,   ~ 2sqrt(p)  hops  
n  Reduction: dual of broadcast 

¨ First add n/p numbers on each processor 
¨ Then do the broadcast “in reverse” and add along the way 
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Analysis 
n  Scatter, add local, communicate back to the corner 

¨  Intersperse with one addition operation 

¨   problem size N=4000, machine size P=100, 
          machine topology: square grid, comms cost  C=100) 

¨ “Scatter:” 18 steps (get data, keep what you need, send the rest 
onwards)  (2(sqrt(P)-1))) 

¨ Add 40 numbers 
¨ “Reduce” the local answers: 18 steps (one send,  add 2 

numbers) 

n  Is P=100 good for this problem? Which P is optimal, 
assuming a square grid)? 

Weekly Roundup 
n Moore’s law (AKA why parallel?) 
n  SIMD vs MIMD 
n  3 major types of parallel computing 
n Explicit versus implicit parallelism 
n Locality 
n Calculation speedup 

¨ Measured 
¨ Theoretical ideal 
¨ Cost of communication 


