
1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

Shared-memory Programming

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline
n  OpenMP
n  Shared-memory model
n  Parallel for loops
n  Declaring private variables
n  Critical sections
n  Reductions
n  Performance improvements
n  More general data parallelism
n  Functional parallelism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OpenMP

n OpenMP: An application programming
interface (API) for parallel programming on
multiprocessors
u Compiler directives
u Library of support functions

n OpenMP works in conjunction with Fortran,
C, or C++

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What’s OMP/MPI/CUDA good for?

n C+OpenMP shared memory multiprocessors
n C+MPI(+OpenMP) distributed machines
 (built out of shared memory machines)

u for us:
 ISTeC Cray:
 52 nodes, each with
 4 processors, each with 6 cores

n  C+CUDA for GPUs
u  for us: Nvidia Tesla 30 processors, 240 cores, on a chip

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model

Processor Processor Processor Processor

Memory

Processors interact and synchronize with each
other through shared variables.

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism

n  Initially only master thread is active
n Master thread executes sequential code
n  Fork: Master thread creates or awakens

additional threads to execute parallel code
n  Join: At end of parallel code created threads

die or are suspended

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism

Tim
e

fork

join

Master Thread

fork

join

Other threads

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Incremental Parallelization

n  Sequential program a special case of a
shared-memory parallel program

n  Parallel shared-memory programs may only
have a single parallel loop

n  Incremental parallelization: process of
converting a sequential program to a
parallel program a little bit at a time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Loops
n  C programs often express data-parallel operations

as for loops
 for (i = first; i < size; i += prime)

 marked[i] = 1;

n  OpenMP makes it easy to indicate when the
iterations of a loop may execute in parallel

n  Compiler takes care of generating code that forks/
joins threads and allocates the iterations to threads

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pragmas

n  Pragma: a compiler directive in C or C++
n  Stands for “pragmatic information”
n A way for the programmer to communicate

with the compiler
n Compiler free to ignore pragmas
n  Syntax:

 #pragma omp <rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma
n  Format:
#pragma omp parallel for
for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];

n  There	is	a	data	dependence	between	the	itera0ons,	but	it	

can	be	resolved.	HOW??			

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma
n  Format:
#pragma omp parallel for
for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];

n  There	is	a	data	dependence	between	the	itera0ons,	but	it	

can	be	resolved.	HOW??			
u  Blocking:	compute	#itera0ons,	group	them	,		compute	
start	index	of	each	group.

n  Compiler must be able to verify the run-time system will
have information it needs to schedule loop iterations. What	
can	we	NOT	have?		

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma
n  Format:
#pragma omp parallel for
for (i = 0; i < N; i++)
 a[i] = b[i] + c[i];

n  There	is	a	data	dependence	between	the	itera0ons,	but	it	

can	be	resolved.	HOW??			
u  Compute	#itera0ons,	group	them	,		compute	start	
index	of	each	group.

n  Compiler must be able to verify the run-time system will
have information it needs to schedule loop iterations. What	
can	we	NOT	have?		
u  	Dynamic	control,	e.g.	condi0onal	exit	out	of	the	loop.

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Canonical Shape of for Loop
Control Clause

)

indexindex
indexindex

indexindex
index
index

index
index
index

index

;index;index(for

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−=

+=

+=

=−
=+

−−

−−
++

++

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

>=

<=

<

≥=

inc
inc

inc
inc
incendstart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Context
n  Every thread has its own execution context
n  Execution context: address space containing all of

the variables a thread may access
n  Contents of execution context:

u  static variables
u dynamically allocated data structures in the

heap
u variables on the run-time stack
u additional run-time stack for functions invoked

by the thread

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

n  Shared variable: has same address in
execution context of every thread

n  Private variable: has different address in
execution context of every thread

n A thread cannot access the private variables
of another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C memory structure recap

n Data variables in C can be:
u In registers (compiler directive, may not

always be followed, and may spill)
u On the stack (activation record of the

current execution context)
u On the heap – dynamically allocated

through malloc

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables
int main (int argc, char *argv[])
{

int b[3];
 char *cptr;

int i;

cptr = malloc(1);
#pragma omp parallel for

for (i = 0; i < 3; i++)
 b[i] = i;

Heap

Stack

cptrb i

ii

Master Thread
 (Thread 0)

Thread 1

4.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_procs

n Returns number of processors available for
use by the parallel program

 int omp_get_num_procs (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_set_num_threads
n Uses the parameter value to set the number

of threads to be active in parallel sections of
code

n May be called at multiple points in a
program
 void omp_set_num_threads (int t)

n  Can you set the #threads >
OMP_NUM_THREADS?
u try it

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring Private Variables
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp);

n  Either loop could be executed in parallel
n  We prefer to make outer loop parallel, to reduce

number of forks/joins
n  We then must give each thread its own private

copy of variable j, WHY?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

private Clause

n Clause: an optional, additional component
to a pragma

n  Private clause: directs compiler to make one
or more variables private

 private (<variable list>)

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of private Clause

#pragma omp parallel for private(j)
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

firstprivate Clause

n  Used to create private variables having initial
values identical to the variable controlled by the
master thread as the loop is entered

n  Variables are initialized once per thread, not once
per loop iteration

n  If a thread modifies a private variable’s value in an
iteration, subsequent iterations that are executed
by this thread will get the modified value, other
threads will work with their own private copy

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lastprivate Clause

n  Sequentially last iteration: iteration that
occurs last when the loop is executed
sequentially

n lastprivate clause: used to copy back
to the master thread’s copy of a variable the
private copy of the variable from the thread
that executed the sequentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition

n Consider this C program segment to
compute π using the rectangle rule:
double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0/(1.0 - x*x);
}
pi = area / n;

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)
n  If we simply parallelize the loop...
 what happens?
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0/(1.0 - x*x);
}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

n  ... we set up a race condition in which two
processes may both read area, then compute
the rhs, then write back

11.667 area

area += 4.0/(1.0 - x*x)

Thread A Thread B

15.432

11.667 11.667 15.432 15.230

15.230 Answer should be 18.995

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition Time Line
Thread A Thread BValue of area

11.667
+ 3.765

+ 3.563

11.667

15.432

15.230

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

critical Pragma

n Critical section: a portion of code that only
one thread at a time may execute

n We denote a critical section by putting the
pragma

#pragma omp critical

in front of a block of C code

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correct, but inefficient, code
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
#pragma omp critical
 area += 4.0/(1.0 - x*x);
}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source of Inefficiency
n Update to area inside a critical section
n Only one thread at a time may execute the

statement; i.e., it is sequential code
n Time to execute statement significant part

of loop, made worse by the need for
synchronization

n  Speedup will be severely constrained
n Can you see a solution?

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reductions

n  Reductions are so common that OpenMP provides
support for them

n  May add reduction clause to parallel for
pragma

n  Specify reduction operation and reduction variable
n  OpenMP takes care of storing partial results in

private variables and combining partial results
after the loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause
n  The reduction clause has this syntax:
reduction (<op> :<variable>)

n  Operators
u  + Sum
u  * Product
u  & Bitwise and
u  | Bitwise or
u  ̂ Bitwise exclusive or
u  && Logical and
u  || Logical or

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

π code with Reduction Clause
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \
 private(x) reduction(+:area)
for (i = 0; i < n; i++) {
 x = (i + 0.5)/n;
 area += 4.0/(1.0 - x*x);
}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #1

n Too many fork/joins can lower performance
n  Inverting loops may help performance if

u Parallelism is in inner loop
u After inversion, the outer loop can be

made parallel
u Inversion does not significantly lower

cache hit rate

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #2

n  If loop has too few iterations, fork/join
overhead is greater than time savings from
parallel execution

n The if clause instructs compiler to insert
code that determines at run-time whether
loop should be executed in parallel; e.g.,

#pragma omp parallel for if(n > 5000)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #3

n  We can use schedule clause to specify how
iterations of a loop should be allocated to threads

n  Static schedule: all iterations allocated to threads
before any iterations executed

n  Dynamic schedule: only some iterations allocated
to threads at beginning of loop’s execution.
Remaining iterations allocated to threads that
complete their assigned iterations.

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Static vs. Dynamic Scheduling

n  Static scheduling
u Low overhead
u May exhibit high workload imbalance

n Dynamic scheduling
u Higher overhead
u Can reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chunks

n A chunk is a contiguous range of iterations
n  Increasing chunk size reduces overhead and

may increase cache hit rate
n Decreasing chunk size allows finer

balancing of workloads

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause
n  Syntax of schedule clause
schedule (<type>[,<chunk>])

n  Schedule type required, chunk size optional
n  Allowable schedule types

u  static: static allocation
u dynamic: dynamic allocation
u guided
u  runtime: type chosen at run-time based on value

of environment variable OMP_SCHEDULE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

n  schedule(static): block allocation of about
 n/#threads contiguous iterations to a thread
n  schedule(static,C): interleaved allocation of

chunks of size C to threads
n  schedule(dynamic): dynamic one-at-a-time

allocation of iterations to threads
n  schedule(dynamic,C): dynamic allocation of

C iterations at a time to threads

23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)
n  schedule(guided, C): dynamic allocation of chunks

to tasks using guided self-scheduling heuristic.
Initial chunks are bigger, later chunks are smaller,
minimum chunk size is C.

n  schedule(guided): guided self-scheduling with
minimum chunk size 1

n  schedule(runtime): schedule chosen at run-time
based on value of OMP_SCHEDULE; Unix
example:
setenv OMP_SCHEDULE “static,1”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More General Data Parallelism

n Our focus has been on the parallelization of
for loops

n Other opportunities for data parallelism
u processing items on a “to do” list
u for loop + additional code outside of

loop

24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a “To Do” List

Heap

job_ptr

Shared
Variables

Master Thread Thread 1

task_ptr task_ptr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel Pragma

n The parallel pragma precedes a block
of code that should be executed by all of the
threads

n Note: execution is replicated among all
threads

25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of parallel Pragma
#pragma omp parallel private(task_ptr)
{
 task_ptr = get_next_task (&job_ptr);
 while (task_ptr != NULL) {
 complete_task (task_ptr);
 task_ptr = get_next_task (&job_ptr);
 }
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Section for get_next_task
char *get_next_task(struct job_struct
 **head) {
 struct task_struct *nextTask;
 #pragma omp critical
 {
 if (*head == NULL) nextTask = NULL;
 else {
 nextTask = (*head)->task;
 *head = (*head)->next;
 }
 }
 return nextTask;
}

26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions for SPMD-style
Programming

n The parallel pragma allows us to write
SPMD-style programs

n  In these programs we often need to know
number of threads and thread ID number

n OpenMP provides functions to retrieve this
information

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_thread_num

n This function returns the thread
identification number

n  If there are t threads, the ID numbers range
from 0 to t-1

n The master thread has ID number 0

int omp_get_thread_num (void)

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_threads

n  Function omp_get_num_threads returns the
number of active threads

n  If call this function from sequential portion
of program, it will return 1

int omp_get_num_threads (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

for Pragma

n The parallel pragma instructs every
thread to execute all of the code inside the
block

n  If we encounter a for loop that we want to
divide among threads, we use the for
pragma

#pragma omp for

28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of for Pragma

#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {
 low = a[i];
 high = b[i];
 if (low > high) {
 printf ("Exiting (%d)\n", i);
 break;
 }
#pragma omp for
 for (j = low; j < high; j++)
 c[j] = (c[j] - a[i])/b[i];
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

single Pragma

n  Suppose we only want to see the output
once

n The single pragma directs compiler that
only a single thread should execute the
block of code the pragma precedes

n  Syntax:

#pragma omp single

29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of single Pragma
#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {
 low = a[i];
 high = b[i];
 if (low > high) {
#pragma omp single
 printf ("Exiting (%d)\n", i);
 break;
 }
#pragma omp for
 for (j = low; j < high; j++)
 c[j] = (c[j] - a[i])/b[i];
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

nowait Clause

n Compiler puts a barrier synchronization at
end of every parallel for statement

n  In our example, this is necessary: if a thread
leaves loop and changes low or high, it
may affect behavior of another thread

n  If we make these private variables, then it
would be okay to let threads move ahead,
which could reduce execution time

30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of nowait Clause
#pragma omp parallel private(i,j,low,high)
for (i = 0; i < m; i++) {
 low = a[i];
 high = b[i];
 if (low > high) {
#pragma omp single
 printf ("Exiting (%d)\n", i);
 break;
 }
#pragma omp for nowait
 for (j = low; j < high; j++)
 c[j] = (c[j] - a[i])/b[i];
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism

n To this point all of our focus has been on
exploiting data parallelism

n OpenMP allows us to assign different
threads to different portions of code
(functional parallelism)

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism Example
 v = alpha();
 w = beta();
 x = gamma(v, w);
 y = delta();
 printf ("%6.2f\n", epsilon(x,y));

alpha beta

gamma delta

epsilon

May execute alpha,
beta, and delta in
parallel

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel sections Pragma

n  Precedes a block of k (sub) blocks of code
that may be executed concurrently by (up
to) k threads

n  Syntax:

#pragma omp parallel sections

32

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

section Pragma

n  Precedes each block of code within the
encompassing block preceded by the
parallel sections pragma

n May be omitted for first parallel section
after the parallel sections pragma

n  Syntax:

#pragma omp section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of parallel sections
#pragma omp parallel sections
 {
#pragma omp section /* Optional */
 v = alpha();
#pragma omp section
 w = beta();
#pragma omp section
 y = delta();
 }
 x = gamma(v, w);
 printf ("%6.2f\n", epsilon(x,y));

33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Approach

alpha beta

gamma delta

epsilon

Execute alpha and
beta in parallel.
Execute gamma and
delta in parallel.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sections Pragma

n Appears inside a parallel block of code
n Has same meaning as the parallel
sections pragma

n  If multiple sections pragmas inside one
parallel block, may reduce fork/join costs

34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of sections Pragma
#pragma omp parallel
 {
 #pragma omp sections
 {
 v = alpha();
 #pragma omp section
 w = beta();
 }
 #pragma omp sections
 {
 x = gamma(v, w);
 #pragma omp section
 y = delta();
 }
 }
 printf ("%6.2f\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/3)

n OpenMP is an API for shared-memory
parallel programming

n  Shared-memory model based on fork/join
parallelism

n Data parallelism
u parallel for pragma
u reduction clause

35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

n  Functional parallelism (parallel sections pragma)
n  SPMD-style programming (parallel pragma)
n  Critical sections (critical pragma)
n  Enhancing performance of parallel for loops

u  Inverting loops
u Conditionally parallelizing loops
u Changing loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (3/3)
Characteristic OpenMP MPI

Suitable for multiprocessors Yes Yes

Suitable for multicomputers No Yes

Supports incremental
parallelization

Yes No

Minimal extra code Yes No

Explicit control of memory
hierarchy

No Yes

