Knapsack Problem and Dynamic Programming

Wim Bohm, CS, CSU

sources: Cormen, Leiserson; Kleinberg, Tardos, Vipin Kumar et al.

Dynamic Programming Applications

Areas.
- Search
- Bioinformatics
- Control theory
- Operations research

Some famous dynamic programming algorithms.
- Unix diff for comparing two files.
- Knapsack
- Smith-Waterman for sequence alignment.
Fibonacci numbers

\[F(1) = F(2) = 1, \quad F(n) = F(n-1) + F(n-2) \quad n \geq 2 \]

Simple recursive solution

```python
def fib(n):
    if n <= 2:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

What is the size of the call tree?

exponential

Using a memo table

```python
def fib(n, table):
    # pre: n>0, table[i] either 0 or contains fib(i)
    if n <= 2:
        return 1
    if table[n] > 0:
        return table[n]
    result = fib(n-1, table) + fib(n-2, table)
    table[n] = result
    return result
```

We use a memo table, never computing the same value twice. How many calls now?
Look ma, no table

def fib(n):
 if n<=2 : return 1
 else
 a = 1; b=1, c=0
 do n-2 times : c = a + b; a = b; b = c
 return c

Compute the values "bottom up"
Only store needed values: the previous two
Same O(n) time complexity, constant space

Dynamic Programming

• Characterize the structure of the problem, ie show how a larger problem can be solved using solutions to sub-problems
• Recursively define the optimum
• Compute the optimum bottom up, storing values of sub solutions
• Construct the optimum from the stored data
Optimal substructure

- Dynamic programming works when a problem has optimal substructure: we can construct the optimum of a larger problem from the optima of a "small set" of smaller problems.
- small: polynomial

- Not all problems have optimal substructure.

- Travelling Salesman Problem (TSP)?

Knapsack Problem

- Given n objects and a "knapsack" of capacity W
- Item i has a weight $w_i > 0$ and value $v_i > 0$.
- Goal: fill knapsack so as to maximize total value.
- Is there a Greedy solution?
 - What’s Greedy again?
 - What would it do here?

repeatedly add item with maximum v_i / w_i ratio ...

Does Greedy work?

Capacity $M = 7$, Number of objects $n = 3$

$w = [5, 4, 3]$
$v = [10, 7, 5] \quad \text{(ordered by } v_i / w_i \text{ ratio)}$
Recursion for Knapsack Problem

Notation: \(\text{OPT}(i, W) = \text{optimal value of max weight subset that uses items } 1, \ldots, i \text{ with weight limit } W. \)

Case 1: item \(i \) is not included:
- Take best of \(\{1, 2, \ldots, i-1\} \) using weight limit \(W \) : \(\text{OPT}(i-1, W) \)

Case 2: item \(i \) with weigh \(w_i \) and value \(v_i \) is included:
- only possible if \(W \geq w_i \)
- new weight limit = \(W - w_i \)
- Take best of \(\{1, 2, \ldots, i-1\} \) using weight limit \(W-w_i \) and add \(v_i \):
 \[\text{OPT}(i-1, W-w_i) + v_i \]

\[
\text{OPT}(i, W) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, W) & \text{if } w_i \leq W \\
\max \{ \text{OPT}(i-1, W), v_i + \text{OPT}(i-1, W-w_i) \} & \text{otherwise}
\end{cases}
\]

Knapsack Problem: Bottom-Up Dynamic Programming

Knapsack. Fill an \(n \)-by-\(W \) array.

Input: \(n, W, w_1, \ldots, w_N, v_1, \ldots, v_N \)

for \(w = 0 \) to \(W \)
\[M[0, w] = 0 \]

for \(i = 1 \) to \(n \)
 for \(w = 0 \) to \(W \)
 if \(w_i \leq w \)
 \[M[i, w] = M[i-1, w] \]
 else
 \[M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, W-w_i] \} \]

return \(M[n, W] \)
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

How do we find the choice vector \(x \), in other words the objects picked in the optimum solution?

Walk back through the table!!

OPT: 40

n=5 Don’t take object 5
Knapsack Algorithm

OPT: 40
n=5 Don’t take object 5
n=4 Take object 4
n=3 Take object 3

and now we cannot take anymore,
so choice set is {3,4}

9/27/16
Knapsack Problem: Running Time

- Running time. $\Theta(nW)$.
- Not polynomial in input size!
 - W can be exponential in n
 - "Pseudo-polynomial."

Knapsack approximation: there exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum

DIY: another example

$W = 5461 \quad P = 7894 \quad M = 10$
Example

\[W = 3 \ 4 \ 6 \ 1 \quad P = 7 \ 8 \ 9 \ 4 \quad M = 10 \]

cap

\[\text{obj} \] 0 1 2 3 4 5 6 7 8 9 10

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 7 & 7 & 7 & 7 & 7
\end{array}
\]

Example

\[W = 5 \ 4 \ 6 \ 1 \quad P = 7 \ 8 \ 9 \ 4 \quad M = 10 \]

cap

\[\text{obj} \] 0 1 2 3 4 5 6 7 8 9 10

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 7 & 7 & 7 & 7 & 7
\end{array}
\]

\[1:2 \quad 0 \ 0 \ 0 \ 8 \ 8 \ 8 \ 8 \ 15 \ 15 \]
Example

\[W = 5 \ 4 \ 6 \ 1 \quad P = 7 \ 8 \ 9 \ 4 \quad M = 10 \]

cap

\[\text{obj} \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \]

\[\{ \} \quad 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]

\[1 \quad 0 \ 0 \ 0 \ 0 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \]

\[1:2 \quad 0 \ 0 \ 0 \ 0 \ 8 \ 8 \ 8 \ 8 \ 8 \ 15 \ 15 \]

\[1:3 \quad 0 \ 0 \ 0 \ 0 \ 8 \ 8 \ 9 \ 9 \ 9 \ 15 \ 17 \]

\[1:4 \quad 0 \ 4 \ 4 \ 8 \ 12 \ 12 \ 13 \ 13 \ 15 \ 19 \text{ take 4} \quad \text{WHY?} \]
Example

\[W = 5 \quad 4 \quad 6 \quad 1 \quad P = 7 \quad 8 \quad 9 \quad 4 \quad M = 10 \]

\[\text{cap} \]

\[\text{obj} \]

\[
\begin{array}{ccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[
\begin{array}{ccccccccccccc}
\{} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 7 & 7 & 7 & 7 & 7 \\
1:2 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8 & 15 & 15 \\
1:3 & 0 & 0 & 0 & 0 & 8 & 8 & 9 & 9 & 9 & 15 & 17 \\
1:4 & 0 & 4 & 4 & 4 & 8 & 12 & 12 & 13 & 13 & 15 & 19 \\
\end{array}
\]

\[\text{WHY?} \]

\[\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 7 & 7 & 7 & 7 & 7 \\
1:2 & 0 & 0 & 0 & 0 & 8 & 8 & 8 & 8 & 8 & 15 & 15 \\
1:3 & 0 & 0 & 0 & 0 & 8 & 8 & 9 & 9 & 9 & 15 & 17 \\
1:4 & 0 & 4 & 4 & 4 & 8 & 12 & 12 & 13 & 13 & 15 & 19 \\
\end{array}
\]

\[\text{WHY?} \]
Example

W = 5 4 6 1 P = 7 8 9 4 M = 10

cap

obj 0 1 2 3 4 5 6 7 8 9 10

{} 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 7 7 7 7 7 7 take 1 WHY?
1:2 0 0 0 0 8 8 8 8 8 15 15 take 2 WHY?
1:3 0 0 0 0 8 8 9 9 9 15 17 not 3 WHY?
1:4 0 4 4 4 8 12 12 13 13 15 19 take 4 WHY?

Solution vector: 1101, optimum: 19