
9/19/16

1

cs475	
Cache	Locality	

Wim	Bohm	(edited	by	Sanjay	Rajopadhye)	
Computer	Science,	CSU	

sources:	Wikipedia,		
3C	paper:		Hill	and	Smith	IEEE	ToC	1989,	“Evaluating	Associativity	in	CPU	caches”	
Roofline:	Williams	et.al.	CACM	2009,	“An	Insightful	Visual	Performance	Model	for	
Multicore	Architectures	

Cache		

•  A	cache	is	a		device		that	transparently	stores	data	so	that	
future	requests	for	that	data	can	be	served	faster.	

•  E.g.	an	on	(CPU)	chip	cache	can	be	accessed	in	a	few	clock	
cycles,	while	accessing	local	memory	takes	100s	of	cycles.	

9/19/16

2

Locality	

•  Caches	exploit	locality:	
•  Temporal	locality:	if	a	particular	memory	location	is	

accessed,	it	is	likely	to	be	accessed	in	the	near	future.	
•  Spatial	locality:	if	a	particular	memory	location	is	

accessed,	then	it	is	likely	that	nearby	memory	locations	
will	be	accessed	in	the	near	future.	

•  Equidistant	locality:	mixture	of	the	two	above:	if	a	
particular	memory	location	is	accessed,	then	it	is	likely	
that	memory	locations	in	an	equidistant	pattern	will	be	
accessed	in	the	near	future.	

Cache	operation	

  When	the	CPU	accesses	memory	location	x,	the	cache	
checks	if	it	has	x.	
  	If	so,	the	memory	access	is	avoided.	We	call	this	a	hit.	
  	If	not,	x	is	fetched	from	memory	and		stored	in	the	cache.	
We	call	this	a	miss.	

  Memory	is	not	fetched	one	word	at	the	time,	but	in	
cache	lines	or	blocks,	for	higher	memory	bandwidth,	and	
good	spatial	locality.		

	

9/19/16

3

Cache	replacement	policy	

  caches	are	smaller	than	local	memories,	they	fill	up	
quickly,	and		therefore	a	replacement	policy	is	needed.	

  The	heuristic	that	it	uses	to	choose	the	entry	to	evict	is	
called	the	replacement	policy.	The	fundamental	problem	
with	any	replacement	policy	is	that	it	must	predict	which	
existing	cache	entry	is	least	likely	to	be	used	in	the	near	
future.		

  A	popular	replacement	policy,	least-recently	used	(LRU),	
replaces	the	least	recently	accessed	entry.	

Associativity	

  The	replacement	policy	decides	where	in	the	cache	a	
copy	of	a	particular	entry	of	main	memory	will	go.		

  If	the	replacement	policy	is	free	to	choose	any	entry	in	
the	cache	to	hold	the	copy,	the	cache	is	called		fully	
associative.		

  At	the	other	extreme,	if	each	entry	in	main	memory	can	
go	in	just	one	place	in	the	cache,	the	cache	is	direct	
mapped.		

  Many	caches	implement	a	compromise	in	which	each	
entry	in	main	memory	can	go	to	any	one	of	N	places	in	
the	cache,	and	are	described	as	N-way	set	associative.	

9/19/16

4

Sources	of	cache	misses:	the		3C	model	

  Compulsory:	On	the	first	access	to	a	block;	the	block	
must	be	brought	into	the	cache;	also	called	cold	start	
misses,	or	first	reference	misses.		

  Capacity:	Occur	because	blocks	are	being	discarded	
from	cache	because	cache	cannot	contain	all	blocks	
needed	for	program	execution	(program	working	set	
is	much	larger	than	cache	capacity).		

  Conflict:	In	the	case	of	set	associative	or	direct	
mapped	block	placement	strategies,	conflict	misses	
occur	when	several	blocks	are	mapped	to	the	same	set	
or	block	frame;	also	called	collision	misses	or	
interference	misses.		

Improving	cache	performance:	
hardware		

  Increased	cache	capacity	

  Higher	associativity	(without	sacrificing	speed/energy)	

  hardware	prefetching	of	instructions	and	data		
  equidistant	locality	

  second-level		/	third	level	cache	(L2,	L3)		
  L3	often	shared	by	multiple	cores	
  there	is	a	difference	in	access	time	between	L1,	L2,	L3	

  out	of	order	instruction	execution	

  branch	prediction	

All	this	makes	modern	CPUs	highly	complex.	

9/19/16

5

Improving	cache	performance:	
software		

  Merging	Arrays:	Improve	spatial	locality	by	single	
array	of	structs	vs.	parallel	arrays		(Fortran).			

  Loop	Interchange:	Change	nesting	of	loops	to	access	
data	in	the	order	stored	in	memory.		

  Loop	Fusion:	Combine	2	or	more	independent	loops	
that	have	the	same	looping	and	some	variables	
overlap.		

  Blocking	or	“tiling”	:	Improve	temporal	locality	by	
accessing	“blocks”	of	data	repeatedly	vs.	going	down	
whole	columns	or	rows.	(prime	sieve)	

Matrix	Multiply	

9/19/16

6

	
Data	or	loop	reordering	for	
improve	cache	performance		

	Matrix	multiply:	

						for	i	=	1	to	n	

								for	j=	1	to	n	

										C[i,j]=0	

										for	k	=	1	to	n	

													C[i,j]+=A[i,k]*B[k,j]			

B is accessed in column order. If
arrays are (as in C) stored in row major
order, cache lines are not helping, which
can cause cache misses for all Bs.

Solution: transpose B

Tiling	

	

•  Instead	of		reading	a	whole	row	of	A	and	
doing	n		whole	row	A		column	B	inner	
products	we	can	read	a	block	of	A	and	
compute	smaller	inner	products	with	sub	
columns	of	B.		

•  These	partial	products	are	then	added	up.		

9/19/16

7

Conventional	matrix	multiply	

Conventional	matrix	multiply	

9/19/16

8

Conventional	matrix	multiply	

Conventional	matrix	multiply	

9/19/16

9

Conventional	matrix	multiply	

Conventional	matrix	multiply	

etc.

9/19/16

10

Conventional	matrix	multiply	

All elements of B are used once, while all of row A[i] are
used n times.
A[i,*] may fit in the cache, B will probably not!

Tiling	A	and	B	

  A	k	x	k	tile	of	A	(which	can	fit	in	the	cache)	block	
multiplies	with	a		k	x	k	tile	of	B	(which	can	fit	in	
the	cache)	and	thus	reuses	the	B	tile	k	times,		
better	cache	use	

  Loops	become	nested	loops	
  outer	loop	visits	tile	origins	
  inner	loops	visit	the	tile	points	

  We	can	parameterize	our	program	with	k	and	
experiment		

9/19/16

11

Tiled	matrix	multiply	

Do the whole block A11 x B11 multiply

Tiled	matrix	multiply	

 The do block A11 x B12 multiply
 How many times are A and B elements used now?

etc.

9/19/16

12

(Memory)	Performance	
Parameters		

  Time	to	complete	one	operation:	latency	

  Time	between	successive	(rate	of)	operations:	
bandwidth	

Same	metrics	can	be	used	for	processors	
  (pipeline)	latency	
  (instruction)	throughput	

  “Hiding”	(memory)	latency	
  Do	something	else	
  Tackling	throughput/bandwidth	

Roofline Model
  Architectural model, based on intuition that off-chip
memory bandwidth is the constraining resource.

 Sam Williams et al. Parallel Computing Lab, Berkeley

  Operational Intensity: FLOPs per byte of memory
traffic, i.e. bytes exchanged between cache(s) and
memory.

  Roofline plots GFLOPs/sec as a function of
GFLOPs/byte on a log log scale
  Polynomials become straight lines

  y intersect: multiplicative factor

  slope: exponent à linear: 450 slope

9/19/16

13

Typical Roofline Plot

1
2
4
8

16
32
64

128
256
512

1024
2048

0.5 2 8 32 128 512 2048 8192

G
F
lo
p
s
/
sec

Operational intensity (GFlops/byte)

min(32n,2048)

min(32n,2048)

Low Operational Intensity:
 - very few FLOPs per byte
 - memory bandwidth is
 limiting factor
 - linear slope behavior

High Operational Intensity:
 - many FLOPs per byte
 - machine peak FLOPs/sec rate is
 limiting factor
 - constant performance

ridge point, where slope meets horizontal:
 minimum operational intensity to get maximal performance

Example: Opteron X2 vs.
Opteron X4

  Both	in	same	socket,	so	same	
memory	behavior	

  X4:	4x	higher	GFLOPs/sec	rate	

						double	#	cores	

						double	peak	performance	/	core	

  4X	higher	roofline,	but	only	
advantageous	when	there	is	
enough	work	per	byte	accessed.	
Low	operational	intensity	
programs	do	not	benefit.	

	

1

2

4

8

16

32

64

0.25 0.5 1 2 4 8 16

G
F
lo
p
s
/
sec

GFlops /byte

Opteron X2

Opteron X4

9/19/16

14

Adding ceilings to roofline

  Roofline gives upper bound on performance,
achieved only if the program you run can
exploit all architectural phenomena.

  Without some optimizations, only a lower
ceiling can be reached

Reducing computational
bottlenecks

  Improve	ILP		
  Better	ILP	covers	the	functional	units	of	the	
machine	better.	

  Can	e.g.	be	achieved	by	loop	unrolling,	or	applying	
				SIMD	(e.g.	SSE	instructions	on	Intel	machines)	

  Balance	FLOP	mix	(add,	multiply)	
  many	machine	have	multiply-add	units	(inner	
product)		

  or	equal	number	of	add	and	multiply	units	

9/19/16

15

Reducing memory
bottlenecks

  Restructure loops for unit stride access (cache,
hardware prefetching)

  Ensure memory affinity
  some memory banks are closer to one core, some

are closer to another cored, so allocate threads and
their data to a core / memory pair

  Software prefetching can outperform hardware
prefetching, e.g., in case of irregular memory
access patterns

1
2
4
8

16
32
64

128
256
512

1024
2048

0.5 2 8 32 128 512 2048 8192

G
F
lo
p
s
/
sec

Operational intensity (GFlops/byte)

min(32n,2048)

min(32n,2048)

ILP Without good ILP,
you cannot get above
this line

Similar lower slope ceilings for memory
e.g.unit stride

balance
With perfect
flop balance you
can reach this line

9/19/16

16

Roofline and cache

  Operational	intensity	can	vary	with	problem	size	
(e.g.	matrix	multiply,	FFT)	because	of	data	reuse	
and	hence	better	cache	behavior,	providing	a	shift	
right	on	the	roofline.	

  Also,	we	can	exchange	computation,	and	thus	
operational	intensity,	for	memory	access	(table	
lookup)	and	shift	left	on	the	roofline.	

		

By doing FLOPs better you go faster

By doing fewer FLOPs you can go faster

