
9/13/16

1

cs475	
OpenMP	Tasks	

Wim	Bohm,	(modified	by	Sanjay	Rajopadhye)	
Computer	Science,	CSU	

	
source:	Oracle	OpenMP	API	User’s	Guide	

Dynamic	tasks	in	OpenMP	

OpenMP	specification	version	3.0	introduced	a	new	
feature	called	tasking.	The	4.0	version	and	beyond	
significantly	extended	tasking.		Tasks	are	generated	
dynamically	in	recursive	structures	or	while	loops.	

  The	parallel	construct	is	the	early	version	of	tasks	

  In	OpenMP,	an	explicit	task	is	specified	using	the	task	
directive.	It	defines	the	code	associated	with	the	task	
and	its	data	environment.	The	task	construct	can	be	
placed	anywhere	in	the	program;	whenever	a	thread	
encounters	a	task	construct,	a	new	task	is	generated.	

	

9/13/16

2

Primitive	tasks:	parallel		
  The	parallel	construct		creates/spawns	tasks,	one	per	
thread.	

  Each	such	task	executes	the	same	code,	is	assigned	to	
a	different	thread,	and	become	“tied”	to	that	thread.	

  The	parallel	construct	may	be	nested.	For	this	to	work	
as	intended	
  The	implementation	must	support	nested	parallelism	
  Teams	of	threads	must	be	dynamically	created	

Task	Execution	

  When	a	thread	encounters	a	task	construct,	it	“spawns”	a	
task	to	execute	one	instance	of	the	region	of	that	
construct.	

  It	is	assigned	to	one	of	the	threads	in	the	current	team	that	
may	choose	to	execute	it	immediately	or	defer	its	
execution	until	a	later	time.	

  	If	task	execution	is	deferred,	then	the	runtime	systems	
places	it	in	a	pool	of	active	tasks.		

  A	thread	that	executes	a	task	may	be	different	from	the	
thread	that	originally	spawned	it.	
  Unless	the	task	is	“tied”	to	the	thread	that	was	initially	

assigned	to	it.	

9/13/16

3

Data	environment	1	
  The	task	directive	takes	the	following	data	attribute	clauses	that	
define	the	data	environment	of	the	task:	
  default (private | firstprivate | shared | none)

  private (list)

firstprivate (list)

  shared (list)

  All	references	within	a	task	to	a	variable	listed	in	the	shared	
clause	refer	to	the	variable	with	that	same	name	known	
immediately	prior	to	the	task	directive.	

  For	each	private	and	firstprivate	variable,	new	storage	is	
created	and	all	references	to	the	original	variable	in	the	lexical	
extent	of	the	task	construct	are	replaced	by	references	to	the	
new	storage.	A	firstprivate	variable	is	initialized	with	the	value	
of	the	original	variable	at	the	moment	the	task	is	encountered.	

  The	OMP	parallel	construct	creates	“implicit”	tasks	

Data	environment	2	

  The	OpenMP	specification	describes	how	the	data-
sharing	attributes	of	variables	referenced	in	parallel	
and	task	

  The	rules	for	how	the	default	data-sharing	attributes	
of	variables	are	implicitly	determined	may	not	always	
be	obvious.	To	avoid	any	surprises,	it	is	recommended	
that	the	programmer	explicitly	scope	all	variables	that	
are	referenced	in	a	task	construct	using	the	data	
sharing	attribute	clauses,	rather	than	rely	on	the	
OpenMP	implicit	scoping	rules.	

9/13/16

4

Task	Wait	

  The	TASKWAIT	Directive	

  The	taskwait	directive	specifies	a	wait	on	the	
completion	of	children	tasks	generated	since	the	
beginning	of	the	current	(implicit	or	explicit)	task.	

  The	taskwait	directive	specifies	a	wait	on	the	
completion	of	direct	children	tasks,	not	all	descendent	
tasks.	

Example:	nfib

// nfib counts the number of nodes in the fib call tree

int nfib(long n) {

 long i, j;

 if (n<2) return 1;

 else {

 #pragma omp task shared(i)

 i=nfib(n-1);

 #pragma omp task shared(j)

 j=nfib(n-2);

 #pragma omp taskwait

 return i+j+1;

} }

	

	

9/13/16

5

nfib’s	main	
int main(int argc, char **argv){

 …

#pragma omp parallel shared(n,v)

 {

 #pragma omp single

 v=nfib(n);

 }

…

}

create	the	pool	of	parallel	threads		executing	
the	tasks		

one	thread	executes	the	initial	nfib(n)	call				

Number	of	tasks	in	nfib		

  #tasks	nfib(n)	=	nfib(n)	

						nfib(30)	=	2,692,537	

						WAY	too	many	tasks	created	

						tasks	do	nothing	but	tasks	creation	

	

						We	need	to	prune	the	task	tree	

	

9/13/16

6

Pruning	the	task	tree	1	
int nfib(long n) {

 long i, j;

 if (n<2) return 1;

 else {

 #pragma omp task shared(i) if (n>33)

 i=nfib(n-1);

 #pragma omp task shared(j) if (n>33)

 j=nfib(n-2);

 #pragma omp taskwait

 return i+j+1;

} }

	

	

Two tasks get spawned and
the parent task does nothing!

Better if the parent task does
one of the nfibs

Pruning	the	task	tree	2	

int nfib(long n) {

 long i, j;

 if (n<2) return 1;

 else {

 #pragma omp task shared(i) if (n>33)

 i=nfib(n-1);

 j=nfib(n-2);

 #pragma omp taskwait

 return i+j+1;

} }

