

Outline

Parallelizing programs with dependences

- None of the loops in the program can be parallelized
- Dependence analysis
- Fine grain wavefronts
- Determining the orientation of wavefronts
- Transforming the program

Parallelization

Consider two statement instances x and y, where x executes after y in the sequential version of the program, that we want to parallelize
$\square x$ depends on y if x and y access (read or write) the same memory location, notation: $\mathrm{y} \leftarrow \mathrm{x}$ Three kinds:
$■ \mathrm{Y}$: write $\leftarrow \mathrm{X}$: read RAW: read after write (true)
$■ \mathrm{Y}:$ read $\leftarrow \mathrm{X}$: write WAR: write after read (anti)

- Y: write $\leftarrow \mathrm{X}$: write WAW: write after write (output)
- Y: read $\leftarrow \mathrm{X}$: read RAR: write after read (input)

Colorado State University ${ }^{3}$

Parallelization

When true, anti, or output dependences occur in a sequential program, their order cannot be changed when parallelizing the program. WHY?

- changing the order changes the outcome of the program

Wavefront Parallelization

How to parallelize computations (e.g., loops in OpenMP) that have dependences:
$■$ None of the loop iterations are independent

Simple examples

for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}++$)
$A[i, j]=f \circ o(A[i, j-1], A[i-1, j])$
for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
for ($\mathrm{j}=1 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}++$)
$B[j]=\operatorname{bar}(B[j-1], B[j])$
for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)

$$
\text { for }(j=1 ; j<M ; j++)
$$

$C[i]=\operatorname{baz}(C[i-1], C[i])$
Colorado State University

Iteration Space \& Data Space

1 Iteration Space: set of values that the loop iterators can take
■ Rectangular region, with "corners" [1,1] and [N-1, M-1]
Data Space: set of values of array indices accessed by the statements in the program

- Ex l: 2-D table, (nearly) identical to the iteration space
- Ex 2: 1 D array, bounded by [0, M-1]
- Ex 3: 1D array, bounded by [0, N-1]

Colorado State University ,

References and Dependences

Reference: a occurrence of an array variable on either

- left hand side (write reference)
- right hand side (read)
of a statement in the loop body
Dependences: specify which iteration points depend on which others
- can be refined if/when there are multiple statements in the program

Finding the dependences

- Very hard problem (undecidable in general) but we have simple cases
- An iteration point [i, j] reads a memory location
- (Many) iterations (may) have written to that location
- Find this set (as a function of [i,j])
- Find the "most recent writer" in this set (again, as a function of $[\mathrm{i}, \mathrm{j}]$)

Colorado State University

Solutions to examples

Exl and Ex2 (same solution, even though the data space is very different). Iteration [i,j] depends on:

- [i, j-1] and [i-1, j] neighbors on west and north
- Ex2 has an additional (memory based dependence)
- Iteration $[\mathrm{i}-1, \mathrm{j}+\mathrm{l}]$ reads a memory location that the iteration $[i, j]$ is overwriting, that must also happen before [i, j] so it cannot be executed before its northeast neighbor
Ex3 is more complicated
- [i,j] depends on [i,j-1] and [i-1, M-1]

Colorado State University „

Dependence Graph (Ex l)

Colorado State University

Dependence Graph (Ex 2)

Colorado State University ${ }^{13}$

(Finally) the parallelization

Now that we know the dependences
between iterations (the dependence graph)

- Analyze to determine what can happen at what time (hopefully many things can happen at the same time)
- Rewrite the program to represent this new order

Redraw the graph

Colorado State University ${ }_{16}$

Writing the (OpenMP) code

Node [i, j] is mapped to [p, t]
■ (i, j \rightarrow p, $t)=(i, j \rightarrow i, i+j-1)$

- Inverse of the transformation:
$\square(p, \dagger \rightarrow i, j)=(p, \dagger \rightarrow p, t-p+1)$
- Determine the transformed iteration space

Write loops that traverse this

- Outer loop must be the time

Inner loop is marked to be executed in parallel with
\#pragma omp parallel for
Write the new loop body
Colorado State University ${ }^{17}$

Source \longrightarrow Loop bounds $\left.\longrightarrow \begin{array}{c}\text { Iteration space } \\ \text { (inequalities) }\end{array}\right]$

From inequalities to loops

Work "inside out," i.e., generate bounds on the innermost dimension (say z_{n}) first
For each inequality, rearrange it into the form:
$a_{n} z_{n} \geq \exp$, for some constant coefficient a_{n}

- If a_{n} is positive, \exp / a_{n} is a lower bound on z_{n}
- Otherwise, $-\exp / a_{n}$ is an upper bound

Let $I_{1} \ldots I_{m}$ be the lower bound expressions and $\mathrm{u}_{1} \ldots \mathrm{u}_{\mathrm{m}^{\prime}}$ be the upper bound expressions.
The innermost loop is (with one caveat):

$$
\text { for }\left(z_{n}=\max \left(l_{1} \ldots I_{m}\right) ; z_{n}<\min \left(u_{1} \ldots u_{m^{\prime}}\right) ; z_{n}++\right)
$$

Recurse on the outer $n-1$ dimensions
Colorado State University 20

Recursion: eliminate Z_{n}

For each pair, $\mathrm{u}_{\mathrm{i}}, \mathrm{I}_{\mathrm{j}}$, introduce an inequality, $u_{i} \geq I_{j}$
Let the collection of these inequalities define the iteration space I_{n-1}

- I_{n-1} is an ($n-1$)-dimensional iteration space (doesn't involve z_{n})
- The first $\mathrm{n}-1$ coordinates of every point in the original iteration space, I_{n} also satisfy I_{n-1}
- I_{n} is the intersection of I_{n-1} and loop bounds Colorado State University ${ }_{21}$

Example (on doc cam)

New loop body

At each point $[\mathrm{t}, \mathrm{p}]$ in the new loop,

- Determine the original iteration point that was mapped to $[\mathrm{t}, \mathrm{p}]$ (inverse of the rectangle-to-parallelogram transformation) Given $[t, p]=[i+j-1, j]$ solve for $[i, j]$ in terms of t and p.
- Add synchronization (optional)
- Optionally, change memory

Colorado State University ${ }_{23}$

New loop body

int i, j;
for ($\dagger=1 ; \dagger<=N+M-3 ; \dagger++$)
\#pragma omp parallel for private i, j
for $(p=\max (1, t-M+2) ; t<=\min (t, N-1) ; p++)\{$
$i=p ;$
$j=t-p+1$;
// insert old loop body (unchanged) here:
// we chose t and p as brand new index names
$A[i, j]=$ foo($A[i, j-1], A[i-1, j])$;
\}

Colorado State University ${ }_{24}$

Example 2 (contd)

Mapping is $(i, j \rightarrow p, t)=(i, j \rightarrow i, 2 i+j-2)$

- Inverse of the transformation:

$$
\square(p, t \rightarrow i, j)=(p, t \rightarrow p, t-2 p+2)
$$

- Transformed iteration space:

$$
\{p, t \mid 1<=p<=N-1 ; 1<=(t-2 p+2)<=M-1\}
$$

Rewrite as:
$\{p,+\mid 1<=p<=N-1 ;+-M+3<=2 p<=t+1\}$
Write the new loop

Example 2 (contd)

```
for (t=3; t<= 2N+M-5; t++)
    for (p = max(1,\lceil\frac{t-M+3}{2}\rceil); p<= min( \lfloor\frac{t+1}{2}\rfloor,N-1) {
        //NEW LOOP BODY:
        i = p; j = t-2p+2;
        // copy the old body
        B[j]=bar(B[j], B[j-1]);
    }
Colorado State University }\mp@subsup{}{27}{
```


Better way

Early preoccupation with memory:
■ Memory allocation of the original program is hurting us

First parallelize the "full table version"
-Then make it use less memory

Exl revisited $=$ Ex 2

int i, j;
for ($t=1 ; t<=N+M-3 ; t++$)
\#pragma omp parallel for private i, j
for ($p=\max (1, t-M+1) ; \dagger<=\min (t, N-1) ; p++)$ \{
$i=p ;$
$j=t-p+1$;
$/ / A[i, j]=$ foo($(A[i, j-1], A[i-1, j])$;
$A[i \% 2, j]=\operatorname{bar}(A[i \% 2, j-1], A[(i-1) \% 2, j])$; if ($p==\mathrm{N}-1$) B[j] = A[i\%2, j];
\}

Colorado State University ${ }_{29}$

Conclusions

- Only simple (fine-grain wavefronts)
- Not dealing with memory

Granularity of synchronization/fork-join overhead
Just the beginning

- Tiling
- Tiling + parallelism
- Memory (remapping)
- Advanced topics in CS 560/575

Colorado State University ${ }_{30}$

