
11/4/16	

1	

CS 475 Parallel
Programming

Wavefront Parallelization

Sanjay Rajopadhye
Colorado State University

Outline

n Parallelizing programs with dependences
n  None of the loops in the program can be

parallelized

n Dependence analysis
n  Fine grain wavefronts

n  Determining the orientation of wavefronts
n  Transforming the program

2

11/4/16	

2	

Parallelization

n Consider two statement instances x and y, where
x executes after y in the sequential version of the
program, that we want to parallelize

n  x depends on y if x and y access (read or write)
the same memory location, notation: y ß x

n Three kinds:
n  Y: write ß X: read RAW: read after write (true)
n  Y: read ß X: write WAR: write after read (anti)
n  Y: write ß X: write WAW: write after write (output)
n  Y: read ß X: read RAR: write after read (input)

3

Parallelization

n When true, anti, or output dependences occur in
a sequential program, their order cannot be
changed when parallelizing the program. WHY?

n  changing the order changes the outcome of the
program

4

11/4/16	

3	

Wavefront Parallelization

n How to parallelize computations (e.g., loops
in OpenMP) that have dependences:
n  None of the loop iterations are independent

5

Simple examples

6

for (i=1; i<N; i++)

 for (j=1; j<M; j++)

 A[i,j] = foo(A[i,j-1], A[i-1,j])

for (i=1; i<N; i++)

 for (j=1; j<M; j++)

 B[j] = bar(B[j-1], B[j])

for (i=1; i<N; i++)

 for (j=1; j<M; j++)

 C[i] = baz(C[i-1], C[i])

11/4/16	

4	

Iteration Space & Data Space

n  Iteration Space: set of values that the loop
iterators can take
n  Rectangular region, with “corners” [1,1] and

[N-1, M-1]
n Data Space: set of values of array indices

accessed by the statements in the program
n  Ex 1: 2-D table, (nearly) identical to the

iteration space
n  Ex 2: 1D array, bounded by [0, M-1]
n  Ex 3: 1D array, bounded by [0, N-1]

7

References and Dependences

n Reference: a occurrence of an array
variable on either
n  left hand side (write reference)
n  right hand side (read)

of a statement in the loop body
n Dependences: specify which iteration

points depend on which others
n  can be refined if/when there are multiple

statements in the program

8

11/4/16	

5	

Finding the dependences

n Very hard problem (undecidable in
general) but we have simple cases
n  An iteration point [i, j] reads a memory

location
n  (Many) iterations (may) have written to that

location
n  Find this set (as a function of [i,j])
n  Find the “most recent writer” in this set

(again, as a function of [i,j])

9

Execution order

10

11/4/16	

6	

Solutions to examples

n  Ex1 and Ex2 (same solution, even though the
data space is very different). Iteration [i,j]
depends on:
n  [i, j-1] and [i-1, j] neighbors on west and north
n  Ex2 has an additional (memory based

dependence)
n  Iteration [i-1, j+1] reads a memory location that the

iteration [i, j] is overwriting, that must also happen
before [i, j] so it cannot be executed before its
northeast neighbor

n  Ex3 is more complicated
n  [i,j] depends on [i,j-1] and [i-1, M-1]

11

Dependence Graph (Ex 1)

12

11/4/16	

7	

Dependence Graph (Ex 2)

13

(Finally) the parallelization

n Now that we know the dependences
between iterations (the dependence graph)
n  Analyze to determine what can happen at

what time (hopefully many things can
happen at the same time)

n  Rewrite the program to represent this new
order

14

11/4/16	

8	

Ex1 wavefront parallelization

15

Redraw the graph

16

11/4/16	

9	

Writing the (OpenMP) code

n  Node [i, j] is mapped to [p, t]
n  (i, j -> p, t) = (i, j -> i, i+j-1)

n  Inverse of the transformation:
n  (p, t -> i, j) = (p, t -> p, t-p+1)

n  Determine the transformed iteration space
n  Write loops that traverse this
n  Outer loop must be the time
n  Inner loop is marked to be executed in parallel

with
 #pragma omp parallel for

n  Write the new loop body

17

Control structure

18

Source Loop bounds Iteration space
(inequalities)

Target Loop bounds
 Transformed
Iteration space
(inequalities)

11/4/16	

10	

Control structure

19

for (i=1; i<N; i++)

 for (j=1; j<M; j++)

{i, j | 1<=i<=N-1; 1<=j<=M-1}

{p, t | 1<=p<=N-1; 1<=(t-p+1)<=M-1}

for (t=1; t<=N+M-3; t++)

 for (p=max(1,t-M+2); p<=min(t, N-1); p++) //this is parallel

{p, t | 1<=p<=N-1; p<=t<=M+p-2}

From inequalities to loops

n  Work “inside out,” i.e., generate bounds on the
innermost dimension (say zn) first

n  For each inequality, rearrange it into the form:
 anzn ≥ exp, for some constant coefficient an

n  If an is positive, exp/an is a lower bound on zn
n  Otherwise, -exp/an is an upper bound

n  Let l1 ... lm be the lower bound expressions and
u1 ... um’ be the upper bound expressions.

n  The innermost loop is (with one caveat):
 for (zn = max(l1 ... lm); zn < min(u1 ... um’); zn++)

n  Recurse on the outer n-1 dimensions

20

11/4/16	

11	

Recursion: eliminate zn
n  For each pair, ui, lj, introduce an inequality,

ui ≥ lj
n  Let the collection of these inequalities

define the iteration space In-1
n  In-1 is an (n-1)-dimensional iteration space

(doesn’t involve zn)

n  The first n-1 coordinates of every point in the
original iteration space, In also satisfy In-1

n  In is the intersection of In-1 and loop bounds

21

Example (on doc cam)

22

11/4/16	

12	

New loop body

n At each point [t, p] in the new loop,
n  Determine the original iteration point that

was mapped to [t, p] (inverse of the
rectangle-to-parallelogram transformation)
Given [t, p] = [i+j-1, j] solve for [i, j] in terms
of t and p.

n  Add synchronization (optional)
n  Optionally, change memory

23

New loop body

24

int i, j;

 for (t=1; t<=N+M-3; t++)

 #pragma omp parallel for private i, j

 for (p=max(1,t-M+2); t<=min(t,N-1); p++) {

 i = p;

 j = t-p+1;

 // insert old loop body (unchanged) here:

 // we chose t and p as brand new index names

 A[i,j] = foo(A[i,j-1], A[i-1,j]);

 }

11/4/16	

13	

Ex2 wavefront parallelization

25

Example 2 (contd)

n Mapping is (i, j -> p, t) = (i, j -> i, 2i+j-2)
n  Inverse of the transformation:

n  (p, t -> i, j) = (p, t -> p, t-2p+2)
n Transformed iteration space:
 {p, t | 1<=p<=N-1; 1<=(t-2p+2)<=M-1}
n Rewrite as:
 {p, t | 1<=p<=N-1; t-M+3<=2p<=t+1}

Write the new loop

26

11/4/16	

14	

Example 2 (contd)

27

for (t=3; t<= 2N+M-5; t++)

 for (p = max(1,); p <= min(, N-1) {

 //NEW LOOP BODY:

 i = p; j = t-2p+2;

 // copy the old body

 B[j]=bar(B[j], B[j-1]);

}

t-M+3
2

!

"
"

#

$
$

t+1
2

!

"
!

#

$
#

Better way

n Early preoccupation with memory:
n  Memory allocation of the original program is

hurting us

n  First parallelize the “full table version”
n Then make it use less memory

28

11/4/16	

15	

Ex1 revisited = Ex 2

29

int i, j;

 for (t=1; t<=N+M-3; t++)

 #pragma omp parallel for private i, j

 for (p=max(1,t-M+1); t<=min(t,N-1); p++) {

 i = p;

 j = t-p+1;

 // A[i,j] = foo(A[i,j-1], A[i-1,j]);

 A[i%2, j] = bar(A[i%2, j-1], A[(i-1)%2, j]);

 if (p==N-1) B[j] = A[i%2, j];

}

Conclusions

n Only simple (fine-grain wavefronts)
n Not dealing with memory
n Granularity of synchronization/fork-join

overhead
n  Just the beginning

n  Tiling
n  Tiling + parallelism
n  Memory (remapping)

n Advanced topics in CS 560/575

30

