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CS 475 Parallel 
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Wavefront Parallelization 
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Colorado State University 

Outline 

n Parallelizing programs with dependences 
n  None of the loops in the program can be 

parallelized 

n Dependence analysis 
n  Fine grain wavefronts 

n  Determining the orientation of wavefronts 
n  Transforming the program 
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Parallelization 

n Consider two statement instances x and y, where 
x executes after y in the sequential version of the 
program, that we want to parallelize 

n  x depends on y if x and y access (read or write) 
the same memory location,  notation: y ß x 

n Three kinds: 
n  Y: write ß X: read RAW: read after write (true) 
n  Y: read  ß X: write WAR: write after read (anti) 
n  Y: write ß X: write WAW: write after write (output) 
n  Y: read  ß X: read RAR: write after read (input) 
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Parallelization 

n When true, anti, or output dependences occur in 
a sequential program, their order cannot be 
changed when parallelizing the program. WHY?  

n  changing the order changes the outcome of the 
program 
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Wavefront Parallelization 

n How to parallelize computations (e.g., loops 
in OpenMP) that have dependences: 
n  None of the loop iterations are independent 
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Simple examples 
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for (i=1; i<N; i++)

    for (j=1; j<M; j++)

        A[i,j] = foo(A[i,j-1], A[i-1,j])


for (i=1; i<N; i++)

    for (j=1; j<M; j++)

        B[j] = bar(B[j-1], B[j])


for (i=1; i<N; i++)

    for (j=1; j<M; j++)

        C[i] = baz(C[i-1], C[i])
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Iteration Space & Data Space 

n  Iteration Space: set of values that the loop 
iterators can take 
n  Rectangular region, with “corners” [1,1] and 

[N-1, M-1] 
n Data Space: set of values of array indices 

accessed by the statements in the program 
n  Ex 1: 2-D table, (nearly) identical to the 

iteration space 
n  Ex 2: 1D array, bounded by [0, M-1] 
n  Ex 3: 1D array, bounded by [0, N-1] 
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References and Dependences 

n Reference: a occurrence of an array 
variable on either 
n  left hand side (write reference) 
n  right hand side (read) 

of a statement in the loop body 
n Dependences: specify which iteration 

points depend on which others 
n  can be refined if/when there are multiple 

statements in the program 
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Finding the dependences 

n Very hard problem (undecidable in 
general) but we have simple cases 
n  An iteration point [i, j] reads a memory 

location  
n  (Many) iterations (may) have written to that 

location 
n  Find this set (as a function of [i,j]) 
n  Find the “most recent writer” in this set 

(again, as a function of [i,j]) 
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Execution order 
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Solutions to examples 

n  Ex1 and Ex2 (same solution, even though the 
data space is very different). Iteration [i,j] 
depends on: 
n  [i, j-1] and [i-1, j] neighbors on west and north 
n  Ex2 has an additional (memory based 

dependence) 
n  Iteration [i-1, j+1] reads a memory location that the 

iteration [i, j] is overwriting, that must also happen 
before [i, j] so it cannot be executed before its 
northeast neighbor 

n  Ex3 is more complicated 
n  [i,j] depends on [i,j-1] and [i-1, M-1] 
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Dependence Graph (Ex 1) 
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Dependence Graph (Ex 2) 
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(Finally) the parallelization 

n Now that we know the dependences 
between iterations (the dependence graph) 
n  Analyze to determine what can happen at 

what time (hopefully many things can 
happen at the same time)  

n  Rewrite the program to represent this new 
order 
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Ex1 wavefront parallelization 

15 

Redraw the graph 
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Writing the (OpenMP) code 

n  Node [i, j] is mapped to [p, t] 
n  (i, j -> p, t) = (i, j -> i, i+j-1) 

n  Inverse of the transformation: 
n  (p, t -> i, j) = (p, t -> p, t-p+1) 

n  Determine the transformed iteration space 
n  Write loops that traverse this 
n  Outer loop must be the time 
n  Inner loop is marked to be executed in parallel 

with 
 #pragma omp parallel for

n  Write the new loop body 
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Control structure 
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Source Loop bounds Iteration space 
(inequalities)

Target Loop bounds
  Transformed
Iteration space 
(inequalities)
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Control structure 
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for (i=1; i<N; i++)

    for (j=1; j<M; j++)


{i, j | 1<=i<=N-1; 1<=j<=M-1}


{p, t | 1<=p<=N-1; 1<=(t-p+1)<=M-1}


for (t=1; t<=N+M-3; t++)

    for (p=max(1,t-M+2); p<=min(t, N-1); p++) //this is parallel


{p, t | 1<=p<=N-1; p<=t<=M+p-2}


From inequalities to loops  

n  Work “inside out,” i.e., generate bounds on the 
innermost dimension (say zn) first 

n  For each inequality, rearrange it into the form: 
 anzn ≥ exp, for some constant coefficient an 

n  If  an is positive, exp/an is a lower bound on zn 
n  Otherwise, -exp/an is an upper bound 

n  Let  l1 ... lm be the lower bound expressions and 
u1 ... um’  be the upper bound expressions. 

n  The innermost loop is (with one caveat): 
 for (zn = max(l1 ... lm); zn < min(u1 ... um’); zn++) 

n  Recurse on the outer n-1 dimensions 
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Recursion: eliminate zn 
n  For each pair, ui, lj, introduce an inequality, 

ui ≥ lj 
n  Let the collection of these inequalities 

define the iteration space In-1 
n  In-1 is an (n-1)-dimensional iteration space 

(doesn’t involve zn) 

n  The first n-1 coordinates of every point in the 
original iteration space, In also satisfy In-1 

n  In is the intersection of In-1 and loop bounds 
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Example (on doc cam) 
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New loop body 

n At each point [t, p] in the new loop, 
n  Determine the original iteration point that 

was mapped to [t, p] (inverse of the 
rectangle-to-parallelogram transformation) 
Given [t, p] = [i+j-1, j] solve for [i, j] in terms 
of t and p. 

n   Add synchronization (optional) 
n  Optionally, change memory 
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New loop body 
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int i, j;

    for (t=1; t<=N+M-3; t++)

    #pragma omp parallel for private i, j

    for (p=max(1,t-M+2); t<=min(t,N-1); p++) {

       i = p;

       j = t-p+1;

       // insert old loop body (unchanged) here:

       // we chose t and p as brand new index names

       A[i,j] = foo(A[i,j-1], A[i-1,j]);

       }
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Ex2 wavefront parallelization 
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Example 2 (contd) 

n Mapping is (i, j -> p, t) = (i, j -> i, 2i+j-2) 
n  Inverse of the transformation: 

n  (p, t -> i, j) = (p, t -> p, t-2p+2) 
n Transformed iteration space: 
    {p, t | 1<=p<=N-1; 1<=(t-2p+2)<=M-1} 
n Rewrite as: 
    {p, t | 1<=p<=N-1; t-M+3<=2p<=t+1}

Write the new loop 
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Example 2 (contd) 
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for (t=3; t<= 2N+M-5; t++)



    for (p = max(1,         ); p <= min(       , N-1) {



       //NEW LOOP BODY:

       i = p; j = t-2p+2;

       // copy the old body

       B[j]=bar(B[j], B[j-1]);

} 


t-M+3
2

!

"
"

#

$
$

t+1
2

!

"
!

#

$
#

Better way 

n Early preoccupation with memory: 
n  Memory allocation of the original program is 

hurting us 

n  First parallelize the “full table version” 
n Then make it use less memory 
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Ex1 revisited = Ex 2 
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int i, j;

    for (t=1; t<=N+M-3; t++)

    #pragma omp parallel for private i, j

    for (p=max(1,t-M+1); t<=min(t,N-1); p++) {

       i = p;

       j = t-p+1;

       // A[i,j] = foo(A[i,j-1], A[i-1,j]);

       A[i%2, j] = bar(A[i%2, j-1], A[(i-1)%2, j]);

       if (p==N-1) B[j] = A[i%2, j];

}


Conclusions 

n Only simple (fine-grain wavefronts) 
n Not dealing with memory 
n Granularity of synchronization/fork-join 

overhead 
n  Just the beginning 

n  Tiling 
n  Tiling + parallelism 
n  Memory (remapping) 

n Advanced topics in CS 560/575 
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