CS475: The prime sieve of Erastosthenes in OpenMP

Sanjay Rajopadhye, Wim Bohm
Colorado State State University
Primes problem

- Find all the prime numbers up to a given number n
- Sieve of Eratosthenes
 - Have an array of prime candidates
 - discover a prime, remove all multiples
- Strategy
 - Start with a sequential algorithm and systematically parallelize it taking locality into account
 - Very OpenMP
Algorithm

Create an array of numbers 2 ... n,
none of which is “marked”

Invariant: the smallest unmarked number is a prime

k ← 2 /* k is the “next” prime number */
repeat
Mark off all multiples of k as non-primes
Set k to the next unmarked number

Invariant: which must be a prime

Why does the invariant work?

until “done”
Pseudo code

for (i=1; i<=n; i++) marked[i] = 0;
marked[0] = marked[1] = 1;
k = index = 2;
while (k<=n) {
 for (i=3; i<=n; i++) if (i%k == 0) marked[i]=1;
 while (marked[++index]) ; // do nothing
 //now index has the first unmarked number:
 //the next prime
 k = index;
}
Analysis & Improvement

- Where does the program spend its time? complexity?
- How to improve?
 - If \(x = a \times b \) is a composite number, then at least one of \(a \) or \(b \) is less than (or equal to) \(\sqrt{x} \) (algorithmic improvement)
 - *So the upper bound of the* \(\text{for} \ (i=3; \ i<=n; \ i++) \) loop can be tightened to?
 - Do we need to start at \(i=3 \)?
 Take \(k = 7 \) (i.e. we have sieved with 2, 3 and 5)
 - has \(2 \times 7 \) been marked? has \(3 \times 7 \) been marked?
 - what is the first unmarked multiple of 7?
 - in general, where can \(i \) start?
Better loop bounds

for (i=0; i<=n; i++) marked[i] = 0;
k = index = 2;
marked[0] = marked[1] = 1;
while (k*k <= n) { // stop at sqrt(n)
 for (i=k*k; i<=n; i++) if (i%k == 0) marked[i]=1;
 while (marked[++index]) ; // do nothing
 // now index has the first unmarked number:
 // the next prime
 k = index;
}
How can we save space?

we don’t need the evens
make 2 a special case, save half the space
Efficient sequential code

- Step wise improve the original sequential program
 Sieve 1
 - do the order of magnitude improvements, going to \sqrt{n} only, starting from k^2
 - save space by only storing odds (pre-sieving evens)
 - what about the step now?
 - can we do this again, pre-sieving multiples of 3?
 - what are the gains, the complications?

- compare to original

- measure the running time for large values of n
 - find an appropriate range
First easy parallelization

for (i=1; i<=n; i++) marked[i] = 0; // parallelize
k = index = 2;
marked[0] = marked[1] = 1;
while (k*k<=n) {
 for (i=k*k; i<=n; i+= k) marked[i]=1; // parallelize
 while (marked[++index]) ;
 k = index;
}

Analysis

- The speedup flattens
 - What memory bandwidth does the program accomplish?

- In the parallel loop, data elements of a very large array marked are accessed once, with zero reuse
 - worse then PA1, because we access memory with a large stride, and write one byte of the whole cache line we have read
 .. and then we go through the whole array again for the next prime

- We need to rewrite (transform) the program so that a smaller, controllable chunk of memory gets reused (re-accessed) multiple times. HOW?
Program transformation

- In the current program we go through the whole *marked* array for one prime.

  ```
  for (i=k*k; i<=n; i+= k) marked[i]=1;
  ```

- This inner loop can be parallelized because the loop bodies are independent and the index ranges can be pre-computed. Then we find the next prime and repeat.

- What if we grab a block of *marked* and apply all necessary primes to it? Now we can adjust the blocksize and so adjust the memory access pattern.

- Which are the necessary primes, i.e. which primes do we sieve with and apply to block [start .. finish]?
Blocking the sieve

Preamble: In an array primes[] store primes up to sqrt(n), say there are numprimes of them.

Elements of the marked array up to index sqrt(n) have been marked. So we can start blocking at that index (call it blockStart):
- instead of going all the way to n with one prime at the time, we sieve with all primes one block of size BLKSIZE at the time.

```c
for (ii=blockStart; ii<=n; ii+=BLKSIZE)  // parallelize
    for (j=0; j<=numprimes; j++)
        for (i=start; i<=min(start+BLKSIZE, n); i+= primes[j])
            marked[i]=1;
```

We have changed the order of computation, is it legal?

Yes, as long as sieving with prime[j] starts with the proper next multiple of cP = prime[j].

What is the value of start? The first odd multiple of cP >= cP*cP in the current block [ii .. ii+BLKSIZE-1]
Finding odd multiple of p in $[lo..hi]$

- **Cases:**
 - $hi < p*p$
 - $lo < p*p \leq hi$
 - $lo \geq p*p$

- Now locate first odd multiple of p
- in CONSTANT time
- (Some of you write a loop 😞)
Blocked Sieve n=100, BLKSIZE=30

1 3 5 7 9
11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
1: Pre compute primes in block $\leq \sqrt{n}$

- 3 5 7 -

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
2: Sieve block 1 with 3 (start = 15)
We do NOT sieve block 1 with 7, why not?

3: Sieve block 1 with 5 (start = 25)

- 3 5 7 -

11 13 - 17 19 - 23 - - 29 31 - - 37 -
41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
4: Sieve block 2 with 3 (start = 45)

- 3 5 7 -

11 13 - 17 19 - 23 - - 29 31 - - 37 -
41 43 - 47 49 - 53 55 - 59 61 - 65 67 -
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
5: Sieve block 2 with 5 (start = 45)

- 3 5 7 -

11 13 - 17 19 - 23 - - 29 31 - - 37 - 41 43 - 47 49 - 53 - - 59 61 - - 67 - 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
6: Sieve block 2 with 7 (start = 49)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>47</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>59</td>
<td>61</td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>71</td>
<td>73</td>
<td>75</td>
<td>77</td>
<td>79</td>
</tr>
</tbody>
</table>
7: Sieve block 3 with 3 (start = 75)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>5</th>
<th>7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td></td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>61</td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>73</td>
<td>77</td>
<td>79</td>
<td>83</td>
</tr>
<tr>
<td>89</td>
<td>91</td>
<td></td>
<td>95</td>
<td>97</td>
</tr>
</tbody>
</table>
8: Sieve block 3 with 5 (start = 75)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>19</td>
<td>23</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>47</td>
<td>53</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>71</td>
<td>73</td>
<td>77</td>
<td>79</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>
9: Sieve block 3 with 7 (start = 77)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3</th>
<th>5</th>
<th>7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>13</td>
<td></td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>29</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td>59</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>73</td>
<td></td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interleaved data decomposition

Book also discusses interleaved allocation:

✔ threads sieve the whole block with interleaved primes

✔ use thread_num (start) and num_threads (step) to pick the next prime

✔ BUT
 load imbalance
 locality problems