Parallel Programming in C with MPI and OpenMP

Michael J. Quinn
Chapter 13

Finite Difference Methods
Outline

- Ordinary and partial differential equations
- Finite difference methods
- Vibrating string problem
- Steady state heat distribution problem
Ordinary and Partial Differential Equations

- Ordinary differential equation: equation containing derivatives of a function of one variable in one dimension
- Partial differential equation: equation containing derivatives of a function in higher Dimensions where the differentiation occurs in some dimension(s).
Examples of Phenomena Modeled by PDEs

- Air flow over an aircraft wing
- Blood circulation in human body
- Water circulation in an ocean
- Bridge deformations as it carries traffic
- Evolution of a thunderstorm
- Oscillations of a skyscraper hit by earthquake
- Heat transfer
Model of Sea Surface Temperature in Atlantic Ocean

Courtesy MICOM group at the Rosenstiel School of Marine and Atmospheric Science, University of Miami
Difference Quotients

\[f(x + h/2) \]

\[f(x - h/2) \]

\[f'(x) \]
Formulas for 1st, 2d Derivatives

\[f'(x) \approx \frac{f(x + h/2) - f(x - h/2)}{h} \]

\[f''(x) \approx \frac{f(x + h) - 2f(x) + f(x - h)}{h^2} \]
f′(x) and f″′(x)

- f′(x) often called df/dx
 - first derivative, the rate of change of f in the x direction. If f is location then f′ is speed.

- f″′(x) often called d²f/dx²
 - second derivative, the rate of change of f′ in x direction. If f′ is speed, then f″′ is acceleration.
Vibrating String Problem

Vibrating string modeled by a hyperbolic PDE
Solution Stored in 2-D Matrix

- Each row represents state of string at some point in time
- Each column shows how position of string at a particular point changes with time
- In some cases (jacobi 1D in PA4) we are just interested in the end state (heat transfer) and we keep only 2 vectors (prev and curr)
Discrete Space, Time Intervals Lead to 2-D Matrix

\[u_{i,j} = u(x_i, t_j) \]
Heart of Sequential C Program

\[u[j+1][i] = 2.0 \times (1.0 - L) \times u[j][i] + L \times (u[j][i+1] + u[j][i-1]) - u[j-1][i]; \]
Parallel Program Design

- Associate primitive task with each element of matrix
- Examine communication pattern
- Agglomerate tasks in same column
- Static number of identical tasks
- Regular communication pattern
- Strategy: agglomerate columns, assign one block of columns to each task
Result of Agglomeration and Mapping
Communication Still Needed

- Initial values (in lowest row) are computed without communication.
- Values in black cells cannot be computed without access to values held by other tasks.
Ghost Points

- Ghost points: memory locations used to store redundant copies of data held by neighboring processes
- Allocating ghost points as extra columns simplifies parallel algorithm by allowing same loop to update all cells
Matrices Augmented with Ghost Points

Lilac cells are the ghost points.
Communication in an Iteration

This iteration the process is responsible for computing the values of the yellow cells.
Computation in an Iteration

This iteration the process is responsible for computing the values of the yellow cells. The striped cells are the ones accessed as the yellow cell values are computed.
Complexity Analysis

- Computation time per element is constant, so sequential time complexity per iteration is $\Theta(n)$
- Elements divided evenly among processes, so parallel computational complexity per iteration is $\Theta(n / p)$
- During each iteration a process with an interior block sends two messages and receives two messages, so communication complexity per iteration is $\Theta(1)$
Replicating Computations

- If only one value is transmitted, the execution time is dominated by communication (message latency)

- We can reduce the number of communications by replicating computations

- If we send k values instead of one, we can advance the simulation k time steps before another communication

- We call these k values Ghost or Halo elements
Replicating Computations

Without replication:

Step 1
Exchange data

With replication:

Step 2
Step 1
Exchange data
Communication Time vs. Number of Ghost Points

![Graph showing the relationship between communication time and number of ghost points. The graph indicates an initial decrease in time with an increase in ghost points, followed by an increase in time with further increases in ghost points.]
Steady State Heat Distribution Problem
Heart of Sequential C Program

\[w[i][j] = \frac{(u[i-1][j] + u[i+1][j] + u[i][j-1] + u[i][j+1])}{4.0}; \]
Parallel Algorithm 1

- Associate primitive task with each matrix element
- Agglomerate tasks in contiguous rows (rowwise block striped decomposition)
- Add rows of ghost points above and below rectangular region controlled by process
Example Decomposition

16 × 16 grid divided among 4 processors
Example Decomposition

16 × 16 grid divided among 4 processors

Here we can also avoid communication by replicated computation (larger ghost buffers)
Example Decomposition

16 × 16 grid divided among 16 processors
Implementation Details

- Using ghost points around 2-D blocks requires extra copying steps
- Ghost points for left and right sides are not in contiguous memory locations
- An auxiliary buffer must be used when receiving these ghost point values
- Similarly, buffer must be used when sending column of values to a neighboring process
Summary (1)

- PDEs used to model behavior of a wide variety of physical systems
- Realistic problems yield PDEs too difficult to solve analytically, so scientists solve them numerically
- Two most common numerical techniques for solving PDEs
 - finite element method
 - finite difference method
Summary (2)

- Finite different methods
 - Matrix-based methods store matrix explicitly
 - Matrix-free implementations store matrix implicitly
- We have designed and analyzed parallel algorithms based on matrix-free implementations
Summary (3)

- Ghost points store copies of values held by other processes
- Explored increasing number of ghost points and replicating computation in order to reduce number of message exchanges
- Optimal number of ghost points depends on characteristics of parallel system