Find all the prime numbers up to a given number n

By “filtering out” the multiples of known primes

Many strategies

- Start with a sequential algorithm and systematically parallelize it using our known and trusted approach (Foster’s method)
- Think out of the box (a completely different approach)
The complexity

- How many primes are there?
 - A: See http://primes.utm.edu/howmany.shtml

- What is the (work) complexity of the sieve?
 - \(\Theta(n \ln \ln n) \)

Sequential Algorithm

\[
\begin{array}{cccccccccccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 \\
47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 \\
\end{array}
\]
Create an array of numbers 2 ... n, none of which is “marked”

Invariant: the smallest unmarked number is a prime

\[k \leftarrow 2 \quad /* \text{k is the “next” prime number */} \]
repeat
mark off all multiples of k as non-primes
set k to the next unmarked number (which must be a prime)
until “done”

Algorithm (contd)

for (i=1; i<=n; i++) marked[i] = 0;
k = index = 2;
marked[0] = marked[1] = 1;
while (k<=n) {
 for (i=2; i<=n; i++) if (i%k == 0) marked[i]=1;
 while (marked[++index]) ; /* do nothing */
 /* now index has the first unmarked number, so */
 ... /*
 k = index;
}
Analysis & Improvement

- Where does the program spend its time?
- How to improve?
 - if $x = a \times b$ is a composite number, then at least one of a or b is less than (or equal to) \sqrt{x} (algorithmic improvement)

Improved code

```c
for (i=0; i<=n; i++) marked[i] = 0;
k = index = 2;
marked[0] = marked[1] = 1;
while (k*k<=n) { /* outer loop iterates only until $\sqrt{n}$ */
    for (i=k*k; i<=n; i++) if (i%k == 0) marked[i] = 1;
    while (marked[++index]) ; /* do nothing */
    /* now index has the first unmarked number, so ... */
    k = index;
}
```

Colorado State University
Sequential performance first (avoid division)

for (i=1; i<=n; i++) marked[i] = 0;
k = index = 2;
marked[0] = marked[1] = 1;
while (k*k<=n) { /* outer loop iterates only until sqrt(n) */
 /* for (i=k*k; i<=n; i++) if (i%k == 0) marked[i]=1; */
 for (i=k*k; i<=n; i+= k) marked[i]=1;
 while (marked[++index]) ; /* do nothing */
 /* now index has the first unmarked number, so ... */
 k = index;
}

Lessons

- Exercise
 - Write the three programs and measure the running time for large values of n
- Priorities:
 - First improve algorithm (asymptotic running time)
 - Next constant factor gains
 - Only then consider parallelization
HW2 Clarification

- Experiment a bit
 - find a “large enough n”
 - running time on one processor ~30 sec
- Then, keep n fixed, change the number of threads
 - gather some running time data
 - plot the speedup
 - explain what you see
 - does it jive with your expectations (hypotheses)

Revisit complexity analysis

- Basic conventions and background:
 - \log (base 10), \lg (base 2), \ln (base e)
 - $\log x$ is number of digits to represent x
 - $\lg x$ is number of bits to represent x
 - $\#\text{primes no larger than } x$: $x/\ln x$
 - Sum of reciprocals of integers no larger than x: $\ln x$
 - Sum of reciprocals of primes no larger than x: $\ln \ln x$
Analysis

- Sequential complexity
 \[T(n) = O(n \ln \ln n) \]
 - \(\log_{10} n \): Number of digits in decimal representation of \(n \)
 - \(\log_2 n \): Number of bits in the binary representation of \(n \)
 - \(\log \log_{10} n \): Digits in decimal representation of that
 - \(\log \log_2 n \): Bits in the binary representation of that

- Almost linear time complexity

Colorado State University

First parallelization

```java
for (i=1; i<=n; i++) marked[i] = 0;
k = index = 2;
marked[0] = marked[1] = 1;
while (k*k<=n) {
  for (i=k*k; i<=n; i+= k) marked[i]=1;
  while (marked[++index]) /* do nothing */
  k = index;
}
```

Parallelize these loops

Colorado State University
Further improvement (constant factor)

- We marked off all even numbers in the first iteration.
- In all subsequent iterations we mark off all multiples of k-th prime
 - **INCLUDING ITS EVEN MULTIPLES**
- Why not make the marked array of only \(n/2 \) elements:
 - ith element in the array represent the ith odd integer \((2i+1)\)
 - Simple idea, subtle details

Are we done?

- Does the easy parallelization give good speedup? Why?
- Cache misses cost hundreds of cycles
- How to exploit locality?
- Change the order of execution to improve locality
Improving locality (blocking)

- Consider a large sub-array of marked array of size BLKSIZE.
- Instead of marking all the multiples of a k from k^2 to n, just mark off those multiples that are in the current block.
- Then increment k
- Move to the next block
 - Only when the multiples of all the primes in the current block are marked off

Preamble: In an array primes[] store primes up to \sqrt{n}, say there are numprimes of them.

Elements of marked, up to index \sqrt{n} already marked during preamble.

So start blocking at there (call it blockStart) but
 - instead of going all the way to n one prime at a time
 - with all primes one block of size BLKSIZE at the time

Colorado State University
Blocked Sieve n=100, BLKSIZE=30

1 3 5 7 9
1 13 15 17 19 21 23 25 27 29 31 33 35 37 39
1 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

1: Pre compute primes in block < sqrt(n)

1 13 15 17 19 21 23 25 27 29 31 33 35 37 39
1 43 45 47 49 51 53 55 57 59 61 63 65 67 69
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Colorado State University
2: Sieve block 1 with 3 (start = 15)

- 3 5 7 -

1 13 - 17 19 - 23 25 - 29 31 - 35 37 -

11 43 45 47 49 51 53 55 57 59 61 63 65 67 69

71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Colorado State University

3: Sieve block 1 with 5 (start = 25)

- 3 5 7 -

1 13 - 17 19 - 23 - - 29 31 - - 37 -

11 43 45 47 49 51 53 55 57 59 61 63 65 67 69

71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Colorado State University
4: Sieve block 2 with 3 (start = 45)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
11 43 - 47 49 - 53 55 - 59 61 - 65 67 -
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

5: Sieve block 2 with 5 (start = 45)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
11 43 - 47 49 - 53 - - 59 61 - - 67 -
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
6: Sieve block 2 with 7 (start = 49)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
1 43 - 47 - - 53 - - 59 61 - - 67 -
71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

7: Sieve block 3 with 3 (start = 75)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
1 43 - 47 - - 53 - - 59 61 - - 67 -
71 73 - 77 79 - 83 85 - 89 91 - 95 97 -
8: Sieve block 3 with 5 (start = 75)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
1 43 - 47 - - 53 - - 59 61 - - 67 -
71 73 - 77 79 - 83 - - 89 91 - - 97 -

9: Sieve block 3 with 7 (start = 77)

- 3 5 7 -
1 13 - 17 19 - 23 - - 29 31 - - 37 -
1 43 - 47 - - 53 - - 59 61 - - 67 -
71 73 - - 79 - 83 - - 89 - - - 97 -
Rewrite inner loop:

for (j=0; j<=numprimes; j++)
 for (i=primes[j]*primes[j]; i<=n; i+= primes[j])
 marked[i]=1;

What is \text{FMIB}[ii,j]?
First Multiple of \text{primes}[j] In \text{ii}^{th} Block
What is \text{start}?

But nothing has changed

So interchange the loops

for (j=0; j<=numprimes; j++)
 for (ii=start; ii<min(start+BKSIZE, n); ii+=BKSIZE)
 for (i=FMIB(ii,j); i<min(start+BKSIZE, n); i+= primes[j])
 marked[i]=1;

for (ii=start; ii<min(start+BKSIZE, n); ii+=BKSIZE)
 for (j=0; j<=numprimes; j++)
 for (i=FMIB(ii,j); i<min(start+BKSIZE, n); i+= primes[j])
 marked[i]=1;
But is this legal?

- This is the key issue (HW2)

- We must ensure that the modified code does exactly what the original program did