CS510: Image Computation

Bruce A. Draper draper@cs.colostate.edu (970) 491-7873 Room 442, CSB

www.cs.colostate.edu/~cs510

Course Theme

- Stage I : Text-based Computers
 - Manual data entry, command-line int
- Stage 2 : Image Output (graphics on screens)
 - Gaming computers (e.g. Xbox)
 - Window-based operating systems
 - Applications: Maps, YouTube, etc.
- Stage 3 : Image Input (cameras everywhere)
 - Gaming (e.g. Kinect)
 - Security (e.g. Face recognition, Beginning!
 - Ubiquitous Computing (e.g. Self-driving cars)

Done

Course Goals

- Prepare students for graduate level research in computer vision
 - Note: no one on the current CSU faculty does (or advises) Ph.D.-level research in graphics.
- Prepare students to integrate vision into new applications (Stage 3!)

Prerequisites

- You are assumed to know:
 - 1) Geometric primitives: points, lines, vectors ...
 - 2) Homogeneous coordinates
 - 3) 3D transformations & their compositions
 - 4) Perspective Projection
 - 5) Geometry of camera models
 - 6) Lighting models & material properties
- Note that this material will not be reviewed: it is assumed that you know it and can build on it.

Course Outline

- 1. Images & Image Matching
 - A. Image Transformations
 - Geometric Transformations
 - Photometric Transformations
 - B. Template matching
 - Pearson's correlation
 - Linear correlation
 - Convolution
 - C. Fourier Transforms
 - 1D & 2D Discrete Fourier Transforms
 - Image space interpretation
 - Correlation & convolution in frequency domain

Course Outline (II)

- 1. Images & Image Matching (cont).
 - D. Scale
 - Scale-space theory
 - Image pyramids
 - Super-resolution
 - E. Correlation filters
 - MACH filters
 - ASEF/MOSSE filters
 - F. Principal Components Analysis
 - Covariance minimization & compression
 - Gaussian process model
 - Subspace projection

Course Outline (III)

- 2. Image Features & Feature Matching
 - A. Correspondence-free approaches
 - A. Local Features
 - Edges (Sobel, Canny)
 - Corners (Harris)
 - DoG (Lowe)
 - B. Feature Descriptors
 - SIFT
 - HoG
 - Color spaces & color histograms
 - C. Matching
 - Bag of Words
 - Deformable Shape Models

Course Outline (IV)

- 2. Image Features & Feature Matching (cont).
 - A. Correspondence-based Approaches
 - RANSAC & Geometric Hashing
 - Active Shape Models
 - Pose estimation
 - SLAM
 - Simultaneous Localization and Mapping

Textbooks

- No single textbook covers these topics.
- Nonetheless,
 - We will mostly use Rick Szeliski's text
 - <u>http://szeliski.org/book</u>
 - free & online
 - We will also use CVOnline
 - http://homepages.inf.ed.ac.uk/rbf/CVonline/
 - Free & online, but less well edited
 - Simon Prince's book is also available (but...)
 - http://www.computervisionmodels.com/
 - I will sometimes reference Shapiro & Stockman's text
 - Outdated, but good on basics
 - Unfortunately, not on line, so I must summarize...

Requirements

- 1) Four programming assignments (75%)
 - Each section has an "easy" assignment, then a hard one
 - In C, C++, or Python
 - Java OpenCV interface is still incomplete
 - Use of OpenCV recommended
 - Qt OK for GUIs.
 - Any other library : ask me first!
 - Variations on assignments are encouraged -but check with me first!

Requirements (II)

- Midterm (10%)
- Final exam (10%)
 - Non cumulative
- In class participation (5%)
 - Subjective on my part
 - Discussions, questions, etc.
 - So be pro-active! Get involved!

Class Slides

Class slides (lectures) go on the class web page.

– As soon as the current bug is fixed.

- The class web page is a general source of useful information, including links to interesting computer graphics and/or computer vision web sites:
 - http://www.cs.colostate.edu/~cs510

Discussion

- What can a computer use a camera for?
- Examples:
 - iPhoto
 - Google Image Search
 - Star Walk (constellation finder)
 - Augmented reality
 - Subway finder, etc.
 - Driver assist
 - Lane changes
 - Obstacle avoidance
 - Automatic parking
 - Security / HCI
 - Is the person sitting at the computer the person who is logged in?

One last thing...

- Send me an email from the account you read most often, with the subject line "Spring CS510"
 - I will use this to make a real class mailing list
 - (Aries web emails are too often not real)

