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Interpolation 

Lecture #2 
January 28, 2013 
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Image Transformation 

•  I(x,y) = 
I’(G�[x,y]T) 

•  Simple for 
continuous, 
infinite images 

•  Problematic for 
discrete, finite 
images 
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Source & Destination Images 
•  We apply a transformation to a source image 

to produce a destination image 
•  The role of source & destination are not 

symmetric 
– We need to know where every destination pixel 

came from in the source image 
•  Typically, a non-integer location 

– We do not need to know where every source pixel 
went 

•  It might be off the edge of the destination image, e.g. 
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Basic Transformation Algorithm 

For every (x,y) in dest 

{ 

 real (u,v) = G-1 (x,y) 

 pixel p = Interpolate(Src, u, v) 

 dest(x,y) = p 

} 
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Applying Transformations 

•  I assume you can invert a 3x3 matrix 
•  So the trick is interpolation. 3 forms: 

– Nearest Neighbor (fast, bad) 
– Bilinear (less fast, good) 
– Bicubic (slowest, best) 
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Nearest Neighbor Interpolation 

•  (u’, v’) = G-1 (x, y, 1) 
•  u = round(u’) 
•  v = round(v’) 
•  Interpolate(Src, x, y) = Src[u,v] 
 

For those who know Fourier Analysis, this is awful in the 
frequency domain 
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Bilinear Interpolation 
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Bilinear Interpolation (II) 
•  Bilinear interpolation is actually a product of two 

linear interpolations 
– … and therefore non-linear 

•  Typical expression: 

•  Linear algebraic expression 

€ 

I u,v( ) = I 0,0( ) 1− x( ) 1− y( ) + I 1,0( )x 1− y( ) + I 0,1( ) 1− x( )y + I 1,1( )xy
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Bicubic Interpolation 

•  Product of two cubic interpolations 
– 1 in x, 1 in y  

•  Based on a 4x4 grid of neighboring pixels 
•  In each dimension, create a cubic curve 

that exactly interpolates all four points 
– Similar to Bezier curves in graphics 
– Except curve passes through all 4 points 
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Bicubic Interpolation (II) 
(-1,-1) (2,-1) 

(-1,2) (2,2) 

X 
(u,v) 
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Bicubic Interpolation (III) 

•  The equation of a cubic function is: 

•  This can be rewritten as: 

•  We know the values of f at -1,0,1,2 

€ 

f x( ) = ax 3 + bx 2 + cx + d
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f x( ) = x 3 x 2 x 1[ ]
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Bicubic Interpolation (IV) 
•  Therefore: 

•  And: 
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Bicubic Interpolation (V) 

•  To interpolate a value: 
1.  Interpolate along the four rows 

•  Calculate a, b, c, d 
•  Use a,b,c,d to calculate value at new x 

2.  Interpolate the results vertically 
•  Each interpolation is a matrix/vector 

multiply 
–  20 mults, 15 adds per interpolation 
–  100 mults, 75 adds overall 
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The Anti-climax 
•  You don’t need to implement geometric 

transformations of interpolations 
•  OpenCV supports geometric transformations 

–  warpAffine applies an affine transformation 
–  warpPerspective applies a perspective transformation 
–  Both give you the option of interpolation technique 

•  Nearest Neighbor 
•  Bilinear 
•  Bicubic 

•  The point of these lectures is so that you would 
know what was happening when you used them 


