
© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Interpolation

Lecture #2
January 28, 2013

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Image Transformation

•  I(x,y) =
I’(G�[x,y]T)

•  Simple for
continuous,
infinite images

•  Problematic for
discrete, finite
images

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Source & Destination Images
•  We apply a transformation to a source image

to produce a destination image
•  The role of source & destination are not

symmetric
– We need to know where every destination pixel

came from in the source image
•  Typically, a non-integer location

– We do not need to know where every source pixel
went

•  It might be off the edge of the destination image, e.g.

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Basic Transformation Algorithm

For every (x,y) in dest

{

 real (u,v) = G-1 (x,y)

 pixel p = Interpolate(Src, u, v)

 dest(x,y) = p

}

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Applying Transformations

•  I assume you can invert a 3x3 matrix
•  So the trick is interpolation. 3 forms:

– Nearest Neighbor (fast, bad)
– Bilinear (less fast, good)
– Bicubic (slowest, best)

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Nearest Neighbor Interpolation

•  (u’, v’) = G-1 (x, y, 1)
•  u = round(u’)
•  v = round(v’)
•  Interpolate(Src, x, y) = Src[u,v]

For those who know Fourier Analysis, this is awful in the
frequency domain

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bilinear Interpolation
(0,0) (1,0)

(0,1) (1,1)

X
(u,v)

(u,0)

(u,1)

Linearly Interpolate along row

Linearly Interpolate along row

(u,v)

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bilinear Interpolation (II)
•  Bilinear interpolation is actually a product of two

linear interpolations
– … and therefore non-linear

•  Typical expression:

•  Linear algebraic expression

€

I u,v() = I 0,0() 1− x() 1− y() + I 1,0()x 1− y() + I 0,1() 1− x()y + I 1,1()xy

€

I x,y() = 1− x,x[]
I 0,0() I 0,1()
I 1,0() I 1,1()

$
%

&

'
(
1− y
y

$
%

&

'
(

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bicubic Interpolation

•  Product of two cubic interpolations
– 1 in x, 1 in y

•  Based on a 4x4 grid of neighboring pixels
•  In each dimension, create a cubic curve

that exactly interpolates all four points
– Similar to Bezier curves in graphics
– Except curve passes through all 4 points

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bicubic Interpolation (II)
(-1,-1) (2,-1)

(-1,2) (2,2)

X
(u,v)

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bicubic Interpolation (III)

•  The equation of a cubic function is:

•  This can be rewritten as:

•  We know the values of f at -1,0,1,2

€

f x() = ax 3 + bx 2 + cx + d

€

f x() = x 3 x 2 x 1[]

a
b
c
d

"

$
$
$
$

%

&

'
'
'
'

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bicubic Interpolation (IV)
•  Therefore:

•  And:
€

f −1()
f 0()
f 1()
f 2()

$

%
%
%
%

&

'

(
(
(
(

=

−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1

$

%
%
%
%

&

'

(
(
(
(

a
b
c
d

$

%
%
%
%

&

'

(
(
(
(

€

a
b
c
d

"

$
$
$
$

%

&

'
'
'
'

=
1
12

−2 6 −4 0
6 −12 −6 10
−6 −2 12 0
2 0 −2 0

"

$
$
$
$

%

&

'
'
'
'

f −1()
f 0()
f 1()
f 2()

"

$
$
$
$

%

&

'
'
'
'

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

Bicubic Interpolation (V)

•  To interpolate a value:
1.  Interpolate along the four rows

•  Calculate a, b, c, d
•  Use a,b,c,d to calculate value at new x

2.  Interpolate the results vertically
•  Each interpolation is a matrix/vector

multiply
–  20 mults, 15 adds per interpolation
–  100 mults, 75 adds overall

© Bruce A. Draper & J. Ross Beveridge, January 25, 2013	

The Anti-climax
•  You don’t need to implement geometric

transformations of interpolations
•  OpenCV supports geometric transformations

–  warpAffine applies an affine transformation
–  warpPerspective applies a perspective transformation
–  Both give you the option of interpolation technique

•  Nearest Neighbor
•  Bilinear
•  Bicubic

•  The point of these lectures is so that you would
know what was happening when you used them

