Interpolation

Lecture #2
January 28, 2013
Image Transformation

- \(I(x,y) = I'(G \cdot [x, y]^T) \)
- Simple for continuous, infinite images
- Problematic for discrete, finite images
Source & Destination Images

• We apply a transformation to a source image to produce a destination image
• The role of source & destination are not symmetric
 – We need to know where every destination pixel came from in the source image
 • Typically, a non-integer location
 – We do not need to know where every source pixel went
 • It might be off the edge of the destination image, e.g.
Basic Transformation Algorithm

For every \((x, y)\) in \(\text{dest}\)
{
\[
\text{real } (u, v) = G^{-1}(x, y)
\]
\[
\text{pixel } p = \text{Interpolate}(\text{Src}, u, v)
\]
\[
\text{dest}(x, y) = p
\]
}
Applying Transformations

• I assume you can invert a 3x3 matrix
• So the trick is interpolation. 3 forms:
 – Nearest Neighbor (fast, bad)
 – Bilinear (less fast, good)
 – Bicubic (slowest, best)
Nearest Neighbor Interpolation

• \((u', v') = G^{-1}(x, y, 1)\)
• \(u = \text{round}(u')\)
• \(v = \text{round}(v')\)
• Interpolate(Src, x, y) = Src[u,v]

for those who know Fourier Analysis, this is awful in the frequency domain
Bilinear Interpolation

(0,0) — (u,0) — (1,0)
Linearly Interpolate along row

(0,1) — (u,1) — (1,1)
Linearly Interpolate along row

(0,0) — (0,1) — (1,1)
Linearly Interpolate along column

(0,0) — (u,0) — (u,1) — (1,1)

(u,v)
Bilinear Interpolation (II)

- Bilinear interpolation is actually a product of two linear interpolations
 - ... and therefore non-linear
- Typical expression:
 \[
 I(u,v) = I(0,0)(1 - x)(1 - y) + I(1,0)x(1 - y) + I(0,1)(1 - x)y + I(1,1)xy
 \]
- Linear algebraic expression
 \[
 I(x,y) = [1 - x, x] \begin{bmatrix} I(0,0) & I(0,1) \\ I(1,0) & I(1,1) \end{bmatrix} \begin{bmatrix} 1 - y \\ y \end{bmatrix}
 \]
Bicubic Interpolation

• Product of two cubic interpolations
 – 1 in x, 1 in y
• Based on a 4x4 grid of neighboring pixels
• In each dimension, create a cubic curve that exactly interpolates all four points
 – Similar to Bezier curves in graphics
 – Except curve passes through all 4 points
Bicubic Interpolation (II)
Bicubic Interpolation (III)

• The equation of a cubic function is:

\[f(x) = ax^3 + bx^2 + cx + d \]

• This can be rewritten as:

\[
\begin{bmatrix}
 a \\
 b \\
 c \\
 d
\end{bmatrix} \begin{bmatrix}
 x^3 \\
 x^2 \\
 x \\
 1
\end{bmatrix}
\]

• We know the values of f at -1,0,1,2
Bicubic Interpolation (IV)

• Therefore:

\[
\begin{bmatrix}
 f(-1) \\
 f(0) \\
 f(1) \\
 f(2)
\end{bmatrix}
= \begin{bmatrix}
 -1 & 1 & -1 & 1 \\
 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 1 \\
 8 & 4 & 2 & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
\]

• And:

\[
\begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
= \frac{1}{12}
\begin{bmatrix}
 -2 & 6 & -4 & 0 \\
 6 & -12 & -6 & 10 \\
 -6 & -2 & 12 & 0 \\
 2 & 0 & -2 & 0
\end{bmatrix}
\begin{bmatrix}
f(-1) \\
f(0) \\
f(1) \\
f(2)
\end{bmatrix}
\]
Bicubic Interpolation (V)

• To interpolate a value:
 1. Interpolate along the four rows
 • Calculate a, b, c, d
 • Use a,b,c,d to calculate value at new x
 2. Interpolate the results vertically
• Each interpolation is a matrix/vector multiply
 – 20 mults, 15 adds per interpolation
 – 100 mults, 75 adds overall
The Anti-climax

• You don’t need to implement geometric transformations of interpolations

• OpenCV supports geometric transformations
 – warpAffine applies an affine transformation
 – warpPerspective applies a perspective transformation
 – Both give you the option of interpolation technique
 • Nearest Neighbor
 • Bilinear
 • Bicubic

• The point of these lectures is so that you would know what was happening when you used them