Interpolation

Lecture \#2
January 28, 2013

Image Transformation

- $1(x, y)=$
$I^{\prime}\left(\mathrm{G} \cdot[\mathrm{x}, \mathrm{y}]^{\mathrm{T}}\right.$)
- Simple for continuous, infinite images
- Problematic for discrete, finite images

Source \& Destination Images

- We apply a transformation to a source image to produce a destination image
- The role of source \& destination are not symmetric
- We need to know where every destination pixel came from in the source image
- Typically, a non-integer location
- We do not need to know where every source pixel went
- It might be off the edge of the destination image, e.g.

Basic Transformation Algorithm

For every (x,y) in dest
\{
real (u, v) $=G^{-1}(x, y)$
pixe1 $p=$ Interpolate(Src, u, v) $\operatorname{dest}(x, y)=p$
\}

Applying Transformations

- I assume you can invert a 3×3 matrix
- So the trick is interpolation. 3 forms:
- Nearest Neighbor (fast, bad)
- Bilinear (less fast, good)
- Bicubic (slowest, best)

Nearest Neighbor Interpolation

- ($\left.u^{\prime}, v^{\prime}\right)=G^{-1}(x, y, 1)$
- $u=$ round(u^{\prime})
- $v=$ round(v')
- Interpolate(Src, x, y) = Src[u,v]

For those who know Fourier Analysis, this is awful in the frequency domain

Bilinear Interpolation

Bilinear Interpolation (II)

- Bilinear interpolation is actually a product of two linear interpolations
- ... and therefore non-linear
- Typical expression:

$$
I(u, v)=I(0,0)(1-x)(1-y)+I(1,0) x(1-y)+I(0,1)(1-x) y+I(1,1) x y
$$

- Linear algebraic expression

$$
I(x, y)=[1-x, x]\left[\begin{array}{cc}
I(0,0) & I(0,1) \\
I(1,0) & I(1,1)
\end{array}\right]\left[\begin{array}{c}
1-y \\
y
\end{array}\right]
$$

Bicubic Interpolation

- Product of two cubic interpolations
-1 in $x, 1$ in y
- Based on a $4 x 4$ grid of neighboring pixels
- In each dimension, create a cubic curve that exactly interpolates all four points
- Similar to Bezier curves in graphics
- Except curve passes through all 4 points

Bicubic Interpolation (II)

Bicubic Interpolation (III)

- The equation of a cubic function is:

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

- This can be rewritten as:

$$
f(x)=\left[\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

- We know the values of f at $-1,0,1,2$

Bicubic Interpolation (IV)

- Therefore:

$$
\left[\begin{array}{l}
f(-1) \\
f(0) \\
f(1) \\
f(2)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
8 & 4 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

- And:

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\frac{1}{12}\left[\begin{array}{cccc}
-2 & 6 & -4 & 0 \\
6 & -12 & -6 & 10 \\
-6 & -2 & 12 & 0 \\
2 & 0 & -2 & 0
\end{array}\right]\left[\begin{array}{c}
f(-1) \\
f(0) \\
f(1) \\
f(2)
\end{array}\right]
$$

Bicubic Interpolation (V)

- To interpolate a value:

1. Interpolate along the four rows

- Calculate a, b, c, d
- Use a, b, c, d to calculate value at new x

2. Interpolate the results vertically

- Each interpolation is a matrix/vector multiply
- 20 mults, 15 adds per interpolation
- 100 mults, 75 adds overall

The Anti-climax

- You don' t need to implement geometric transformations of interpolations
- OpenCV supports geometric transformations
- warpAffine applies an affine transformation
- warpPerspective applies a perspective transformation
- Both give you the option of interpolation technique
- Nearest Neighbor
- Bilinear
- Bicubic
- The point of these lectures is so that you would know what was happening when you used them

