Photometric Image Manipulation

Lecture #2 January 30, 2013

http://www.tikodata.com/uncategorized/cross-talk-in-small-pixel-image-sensors/

Photometric Values

- What determines the value of a pixel?
 - Energy, obviously. The more the higher.
 - But how much energy is 0?
 - How much more energy is 1? Or 255?

Incoming Visible

Visible Light passes through IR-Blocking

Color Filters control reaching a sensor

Color blind sensors reaching each sensor into electricity

Photometric Values (II)

- Amount of light
- Two physical camera factors
 - Aperture
 - Shutter speed
- Three electronic camera factors
 - Offset ('0' level; a.k.a. brightness)
 - Gain (energy per increment; a.k.a. contrast)
 - Max Value (typically 255)

Model of Photometric Responses

Actual Photometric Responses

Responses for real cameras (from http://www.cs.columbia.edu/CAVE/projects/rad_cal/)

Range Equalization

- Linearly rescale every image to 0 255
 - Source_min is smallest observed value
 - Source_max is largest observed value
 - Max value is largest possible value (e.g. 255)
- Compensates for differences in gain only

$$value = \max_value \cdot \frac{(source - source_\min)}{(souce_\max-source_\min)}$$

Histogram Equalization

- The most common and effective photometric equalization technique
 - You will need this for the first homework
- Compensates (imperfectly) for differences in gain, offset and max value
- General idea: flatten the cumulative distribution
 - Bottom 10% of range should have 10% of pixels
 - Bottom 20% of range should have 20% of pixels
 - Etc.

http://gavtrain.blogspot.com/2010/06/quick-guide-to-reading-histogram.html

Histogram Equalization : Step 1

- Histogram the intensity values of the image
 - If source image is color, I = (R+G)/2

Histogram Equalization : Step 2

 Convert histogram into a cumulative density function (cdf)

$$cdf(I) = \frac{1}{N} \sum_{i=0}^{i=\max_value} H(i) = cdf(i-1) + \frac{1}{N}h(i)$$

Standard Definition Incremental Definition

Histogram Equalization : Step 3

Reassign values based on cdf

$$I(x,y) = \max_value \cdot cdf(I'(x,y))$$

(In the equation above, I' is the image prior to histogram equalization, and I is the image post equalization)

Histogram Equalization Discussion

- How well does histogram equalization compensate for differences in offset?
- How well does it compensate for differences in gain?
- How about differences in max value?
- How about non-linear responses?

- Think about the data from Columbia earlier...

