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How do we (directly)  
compare two images? 
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Pixel-wise Comparison 
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Or, normalized by image area, about 5 grey values per pixel. 



Consider two vectors/points. 

Backup - what is “similarity”? 
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Common Approaches 

Euclidean (L2)Distance 

City Block (L1) Distance 

Pearson’s Correlation 

Linear Correlation 

Important, Less Common 

Mahalanobis Distance 

Mutual Information 
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Distance vs. similarity: 



Simple Distances (norms) 
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L1 - City Block Distance 

L2 - Euclidean Distance 

Generalized L-norm 
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Properties of L1 Distance 
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Consider the following problem: 

Find the unique point “closest” to k other points. 

For simplicity, do this in R (a line) with k = 2. 

2 8 ? 

See the problem yet? 
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2 − 3 + 8 − 3 = 6
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2 − 4 + 8 − 4 = 6



In Comparison, Consider L2 
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Find the unique point “closest” to k other points. 

2 8 ? 

Using L2,  

2 8 5 

Best Not as Good 
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2 − 5( )2 + 8 − 5( )2 = 18
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2 − 4( )2 + 8 − 4( )2 = 20



Sources of Image Variation 
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•  Change in scene content 
•  Out-of-plane rotation, scale change 
•  In-plane translation, rotation 

•  Change in illumination 

•  Change in mixed-pixels 
•  Change in gain, f-stop 
•  Electronic noise 
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Motivating Pearson’s Correlation 
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Let’s play a Game 

Two vectors are 
similar to the 

extent that the 
value at a 

dimension in 
one lets you 
predict the 
value in the 

other 



The results of the Game 
•  First Game - Random 

–  Expected ~20% correct 

•  Second Game 
–  Invert 1-5 to 4-0 

–  Add some noise 

•  Game 2 - features 
–  Nearly perfect prediction 
–  … to within one value. 

•  Punch line 
–  Correlation measures 

predictability! 
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Pearson’s Correlation 
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Assumptions of Correlation 

•  Two signals vary linearly 
– Constant shift to either signal has no effect.  
–  Increased amplitude has no effect.  

•  This minimizes sensitivity to: 
– changes in (overall) illumination  
– offset or gain. 
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Special Cases 
•  Any two linear functions  

 with positive slope have  
 correlation 1.  

– Only the sign of the slope matters. 
•  Any two linear functions with differently signed 

slopes have correlation -1. 
– This is called anti-correlation 
– Anti-correlation = correlation for prediction. 
– For matching, it may or may not be as good… 

•  Correlation undefined for slope = 0 (σ=0) 
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Correlation (cont.) 
•  Correlation is sensitive to: 

–   Translation 
–   Rotation: in-plane and out-of-plane 
–   Scale 

•  Because it … 
– Assumes pixels align one atop the other.  
– Compares two images pixel by pixel. 

•  Translation handled by convolution 
– Example, alignment by template matching 
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Computing Correlation 
•  Note that adding a constant to a signal 

does not change its correlation to any other 
signal, so 
– Let’s subtract average A from A(x,y) 
– Let’s subtract average B from B(x,y) 
– The mean of both signals is now zero 
– Then correlation reduces to: 
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Computing Correlation (II) 
•  For zero-mean signals, we can scale them 

without changing their correlation scores 
– Multiply A by the inverse of its length 
– Multiply B by the inverse of its length 
– Both signals are now unit length 
– Then correlation reduces to: 

•  Gives rise to ‘Correlation Space’. 
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Correlation Space 
•  Why zero-mean & unit-length your 

images? 
•  Consider database retrieval 

– Compare new image A … 
– with many images in database. 
– When database images are stored in their 

zero-mean & unit-length form, then  
– Preprocess A (zero-mean, unit-length) 
– Compute dot products 
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Correlation Space (II) 
•  New idea: image as a point in an N 

dimensional space 
•  N = width x height 

•  Zero-mean & unit-length images lie on an 
N-1 dimensional “correlation space” where 
the dot product equals correlation. 
– This is a highly non-linear projection. 
– Points lie on an N-1 surface within the original N 

dimensional space. 
•  So consider points in 3-D …. 
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Correlation Space (II) 
•  Subtracting mean - translation. 
•  Length one - project onto sphere. 
•  Correlation is then: 

– Cosine of angle between vectors (points). 
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Useful Connection … 
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•  Euclidean distance is inversely proportional 
to correlation in correlation space. 
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