Image Matching

Lecture \#04
February 1, 2013

How do we (directly) compare two images?

Are these images the same? Are they similar?

Pixel-wise Comparison

Or, normalized by image area, about 5 grey values per pixel.

$$
8,140=\sum_{x}^{x<148} \sum_{y}^{y<161}|A(x, y)-B(x, y)|
$$

Colorado State University

Backup - what is "similarity"?

Consider two vectors/points.

$$
X=\left|\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right| \quad Y=\left|\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right|
$$

Distance vs. similarity:

$$
\begin{aligned}
& S: R^{n} \times R^{n} \rightarrow R \\
& D: R^{n} \times R^{n} \rightarrow R
\end{aligned}
$$

$S \propto 1 / D$

Common Approaches
Euclidean (L2)Distance
City Block (L1) Distance
Pearson's Correlation
Linear Correlation
Important, Less Common
Mahalanobis Distance
Mutual Information

Simple Distances (norms)

L1 - City Block Distance

$$
\sum_{x, y}(|A(x, y)-B(x, y)|)
$$

L2 - Euclidean Distance

$$
\sqrt{\sum_{x, y}(A[x, y]-B[x, y])^{2}}
$$

Generalized L-norm

$$
\sqrt{\sum_{x, y}(|A(x, y)-B(x, y)|)^{\prime}}
$$

ColoradoState University

Properties of L1 Distance

Consider the following problem:
Find the unique point "closest" to k other points.
For simplicity, do this in R (a line) with $\mathrm{k}=2$.

See the problem yet?

$$
|2-3|+|8-3|=6 \quad|2-4|+|8-4|=6
$$

In Comparison, Consider L2

Find the unique point "closest" to k other points.

Using L2,

Best
Not as Good

Sources of Image Variation

- Change in scene content
- Out-of-plane rotation, scale change
- In-plane translation, rotation
- Change in illumination
- Change in mixed-pixels
- Change in gain, f-stop
- Electronic noise

ColoradoState University

Motivating Pearson's Correlation

Let's play a Game
CS 510 Guess The Next Number Game
Solutions

Two vectors are similar to the extent that the
value at a dimension in one lets you predict the value in the other

CS 510 Guess The Next Number Game Solutions								
	Gam				Gam			
	X	Y	Y-True	Check	X	Y	Y-True	Check
1	4	3			4	1		
2	1	4			1	3		
3	3	2			3	3		
4	2	5			2	3		
5	5	5			5	0		
6	1	2			1	3		
7	4	5			4	1		
8	5	4			5	1		
9	5	2			5	0		
10	4	3			4	2		
11	4				4			
12	3				3			
13	5				5			
14	3				3			
15	4				4			
16	2				2			
17	1				1			
18	2				2			
19	1				1			
20	1				1			

The results of the Game

- First Game - Random
- Expected ~20\% correct
- Second Game
- Invert 1-5 to 4-0
- Add some noise
- Game 2 - features
- Nearly perfect prediction
- ... to within one value.
- Punch line
- Correlation measures predictability!

Pearson's Correlation

$$
\frac{\sum_{x, y}(A(x, y)-\bar{A})(B(x, y)-\bar{B})}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

What is the underlying model?

ColoradoState University

Assumptions of Correlation

$$
\frac{\sum_{x, y}(A(x, y)-\bar{A})(B(x, y)-\bar{B})}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

- Two signals vary linearly
- Constant shift to either signal has no effect.
- Increased amplitude has no effect.
- This minimizes sensitivity to:
- changes in (overall) illumination
- offset or gain.

Special Cases

- Any two linear functions with positive slope have correlation 1.

- Only the sign of the slope matters.
- Any two linear functions with differently signed slopes have correlation-1.
- This is called anti-correlation
- Anti-correlation = correlation for prediction.
- For matching, it may or may not be as good...
- Correlation undefined for slope $=0(\sigma=0)$

Correlation (cont.)

- Correlation is sensitive to:
- Translation
- Rotation: in-plane and out-of-plane
- Scale
- Because it ...
- Assumes pixels align one atop the other.
- Compares two images pixel by pixel.
- Translation handled by convolution
- Example, alignment by template matching

Computing Correlation

- Note that adding a constant to a signal does not change its correlation to any other signal, so
- Let's subtract average A from A(x,y)
- Let's subtract average B from $B(x, y)$
- The mean of both signals is now zero
- Then correlation reduces to:

$$
\frac{A \cdot B}{\sqrt{\sum_{x, y}(A(x, y)-\bar{A})^{2}} \sqrt{\sum_{x, y}(B(x, y)-\bar{B})^{2}}}
$$

Computing Correlation (II)

- For zero-mean signals, we can scale them without changing their correlation scores
- Multiply A by the inverse of its length
- Multiply B by the inverse of its length
- Both signals are now unit length
- Then correlation reduces to:

$$
A \cdot B
$$

- Gives rise to 'Correlation Space'.

Correlation Space

- Why zero-mean \& unit-length your images?
- Consider database retrieval
- Compare new image A ...
- with many images in database.
- When database images are stored in their zero-mean \& unit-length form, then
- Preprocess A (zero-mean, unit-length)
- Compute dot products

Correlation Space (II)

- New idea: image as a point in an N dimensional space
- $\mathrm{N}=$ width x height
- Zero-mean \& unit-length images lie on an N -1 dimensional "correlation space" where the dot product equals correlation.
- This is a highly non-linear projection.
- Points lie on an $\mathrm{N}-1$ surface within the original N dimensional space.
- So consider points in 3-D

Correlation Space (II)

- Subtracting mean - translation.
- Length one - project onto sphere.
- Correlation is then:
- Cosine of angle between vectors (points).

Useful Connection ...

- Euclidean distance is inversely proportional to correlation in correlation space.

$$
\begin{aligned}
\sqrt{\sum_{x, y}(A[x, y]-B[x, y])^{2}} & =\sqrt{\sum_{x, y} A[x, y]^{2}+\sum_{x, y} B[x, y]^{2}-2 A[x, y] B[x, y]} \\
& =\sqrt{1+1-2 \sum_{x, y} A[x, y] B[x, y]} \\
& =\sqrt{2-2 A \cdot B} \\
& =\sqrt{2-2 \operatorname{Corr}(A, B)}
\end{aligned}
$$

> Nearest-neighbor classifiers in correlation space maximize correlation

