Introduction to Fourier Analysis

CS 510

Lecture #6

February 6th, 2013

Details are on the assignments page... you have until Monday

Programming Assignment #1

Motivation for Fourier Analysis

- We will now briefly detour into Fourier Analysis
- Why?
 - It will make template matching faster
 - It will help us build better templates
 - It will improve our intuitive understanding of image space
- Other benefits we will not address
 - Understand image aliasing, Nyquist rates, etc.
 - Understand JPG compression

Image Data as a Function

Sampling

Any repeating pattern can be constructed from an (infinite number of) sine waves.

Fourier Analysis ≠ Magic

- Many textbooks make is obscure, but...
- We are just rewriting a function f(x) over a finite range.
 - In effect, we pretend it repeats.
 - And reconstruct it as a sum of sine waves ...
- For each sine wave, we specify:
 - A frequency
 - An amplitude
 - A phase

The Sine Wave

This may be a review from high school, but...

The Sine Wave (II)

$$g(x) = a\cos(fx + \phi)$$
Amplitude

Amplitude

Simplifying Phase

- Phase describes where the cycle crosses the x axis:
 - If it crosses at 0 and $-\pi$, it's a sine wave.
 - If it crosses at $\pi/2$ and $\pi/2$, it a cosine wave.
 - In general, if it crosses at ϕ and ϕ + π radians, it has phase ϕ $\pi/2$ (i.e., cosine, not sine)
 - $\phi = 0 \Rightarrow$ cosine wave
 - $\phi = \pi \Rightarrow$ sine wave
- A wave with phase φ can be expressed as:

$$\cos(x + \phi) = \alpha\cos(x) + \beta\sin(x)$$

Phase (II)

Where:

$$\phi = \tan^{-1} \left(\frac{\beta}{\alpha} \right)$$

$$\cos(\theta + \phi) = \sqrt{\alpha^2 \cos^2(\theta) + \beta^2 \sin^2(\theta)}$$

 $(\theta + \phi)$ still indicates that the cosine curve has been shifted by ϕ degrees.

Therefore...

$$g(x) = a_1 \cos(f_1 x) + b_1 \sin(f_1 x)$$

$$+ a_2 \cos(f_2 x) + b_2 \sin(f_2 x)$$

$$+ a_3 \cos(f_3 x) + b_3 \sin(f_3 x)$$

$$+ \cdots$$

- Remaining problems
 - Now has twice as many terms (2 per frequency)
 - Must specify amplitude and frequency for each

Visualization - Nice Applet

Now, Per Frequency

- For any given frequency f₁, we must calculate the amplitude of the cosine and sine functions
- G(x) is infinite (x can be anything), so we have to fit the cosines and sines to all the data:

$$a_1 = \int_{-\infty}^{+\infty} f(x) \cos(f_1 x) dx \qquad b_1 = \int_{-\infty}^{+\infty} f(x) \sin(f_1 x) dx$$

Representing Frequencies

- Our function g(x) is infinitely repeating
- Assume, WLOG, the unit of repetition is 1
 - So g(0+a) = g(1+x) = g(2+a)...
- Only cosines & sines with periods that are integers make sense
 - Otherwise is wouldn't repeat
- The cosine whose period is 1 is written as

$$\cos(2\pi x)$$

Frequencies (cont).

 In general the frequency that repeats u times over the interval is written as

$$\cos(2\pi ux)$$

Where u is any integer

So, to rewrite g(x)

• For every integer frequency u = 1, 2, 3, ...

$$g(x) = a_1 \cos(2\pi x) + b_1 \sin(2\pi x)$$

$$+ a_2 \cos(2\pi 2x) + b_2 \sin(2\pi 2x)$$

$$+ a_3 \cos(2\pi 3x) + b_3 \sin(2\pi 3x)$$

$$+ a_4 \cos(2\pi 4x) + b_4 \sin(2\pi 4x)$$
+...

$$a_{u} = \int_{-\infty}^{\infty} g(x) \cos(2\pi ux) dx \quad b_{u} = \int_{-\infty}^{\infty} g(x) \sin(2\pi ux) dx$$

Fourier Transform

Formally, the Fourier transform in 1D is:

$$F(u) = \int_{-\infty}^{+\infty} f(x) [\cos 2\pi ux - i \sin 2\pi ux] dx$$

Where:

u is an integer in the range from 0 to ∞

-i is used to create a 2D vector space

$$F(u) = a_u + ib_u$$

The DC component

What happens when u = 0?

$$-\cos(0) = 1, \sin(0) = 0$$

So

$$F(u=0) = \int_{-\infty}^{+\infty} f(x) [\cos 2\pi ux - i \sin 2\pi ux] dx$$
$$= \int_{-\infty}^{+\infty} f(x) dx$$

 This is the average value (or "DC component") of the function. For images, it is largely a function of lighting.

Inverse Fourier Transform

 What if I have F(u) for all u, and I want to recreate the original function g(x)?

Well, sum it up for every u:

$$f(x) = \int_{-\infty}^{+\infty} F(u) \left[\cos(2\pi ux) + i\sin(2\pi ux)\right] du$$

Discrete Fourier Transform

- Problem: an image is not an analogue signal that we can integrate.
- Therefore for $0 \le x < N$ and $0 \le u < N/2$:

$$F(u) = \sum_{x=0}^{N-1} f(x) \left[\cos \left(\frac{2\pi ux}{N} \right) - i \sin \left(\frac{2\pi ux}{N} \right) \right]$$

And the discrete inverse transform is:

$$f(x) = \frac{1}{N} \sum_{x=0}^{N-1} F(u) \left[\cos \left(\frac{2\pi ux}{N} \right) + i \sin \left(\frac{2\pi ux}{N} \right) \right]$$

Discrete vs. Continuous

- Summation replaces integration
- Division by N (the number of discrete samples) makes the unit of repetition 1.
- For any signal (continuous or discrete)
 - G(x) is called the spatial domain
 - F(u) is called the frequency domain

Spatial vs Frequency

- Spatial domain representation size?
 - Given N samples, it is size N
- Frequency domain representation size?
 - A total of N/2 frequencies
 - A complex number (2 values) per frequency
- The DFT is invertible, so the two representations are equivalent:
 - Exact same information and same size
 - The FFT is O(n log n)