Fourier Matching
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Details are on the assignments page... you have until Monday
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The Discrete Fourier Transform
e ForO=x <N and 0 = u <N/2:

Flu)= 3 £(x) :COS(ZJ;VMX) ] isin(zjjrvux):

flx) = iNE_lzv(u) :Cos(zjjtvux) R lsm(2.7]rvux)-
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2D Fourier Transform

So far, we have looked only at 1D signals
* For 2D signals, the generalization is:

F(uy) = _j:zf(x,y)[cos(Zn(ux + vy)) — isin(ZJr(ux + vy))]

Note that frequencies are now two-
dimensional

—u=freqginx,v="freqiny

Every frequency (u,v) has a real and an
imaginary component.




2D sine waves
* This looks like you'd expect in 2D

» Note that the
frequencies don’t have
to be equal in the two
dimensions.

http://images.google.com/imgres?imgurl=http://developer.nvidia.com/dev Leorreerreresree——rorreresrrroser
sine_wave_perturbation_ogl.jpg&imgrefurl=http://developer.nvidia.com/object/
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2D Discrete Fourier Transform

N/?2 N/?2

Fun)e 33 sl y[cos(zlj(umy))_lsm(fj(umy))]

=-N/2y=-N/2

* What happened to the bounds on x & y?

* How big is the discrete 2D frequency
space representation?




1D Fourier bounds

* We define the 1D frequencies as 0 to N/2

» Others use —N/2 to N/2, but remember that
— C0S(X) = cos(-x)
— sin(x) = -sin(-x)

F(u) - E f(x)[cos(zj;ux) _ lsm(z";”x)] —asib
F(ou) - () cos( ‘2;”)“) _ zsm( 2;”’6)] Cacib
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2D Frequency Bounds
* What happens in 2D?

N/2 N/2 2.7'[ 27[
F(u,v 2 2 f X y [cos( (ux +vy)) - zsm( (ux +vy))] =a+bi
=-N/2y=-N/2 N N
N/2 N/2 27[ 2.7[
F(—u,—v E E f X,y [cos( ( —ux + —vy)) - zsm( ( —ux + —vy))] =a-bi
=-N/2y=-N/2 N N
N/2 N/2

[ 27 .. (27 - .
= E E f(x,y)_cos W(—uxﬂzy) —isin W(—ux+vy) | =c+di

x==N/2y=-N/2
N/2 N/2

e .. (27 - :
—v) = E 2 f(x,y)-cos W(ux+—vy) —isin W(ux+—vy) -—c—dz

x==-N/2y=-N/2
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2D Frequency Bounds (cont)

« Size of 2D Frequency representation:

— One dimension must vary from —N/2 to N/2,
while the other varies from 0 to N/2
 Doesn’t matter which is which

— N * (N/2) * 2 values per frequency = N2
— Same as the source spatial representation




Showing Frequency Space

* To display a frequency space:
— We plot it from —N/2 to N/2 in both dimensions

— The result is symmetric about the origin (and
therefore redundant)

— We can’t plot a complex number, so we show
the magnitude at every pixel, i.e. sqrt(a? + b?)
* Thus discarding the phase information
* Phase plots are also possible (tan-'(b/a))
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Showing Frequency Space

2D Fourier Applet

Ol e & ¥
 size :)-Tu

http://www.brainflux.org/java/classes/FFT2DApplet html
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Frequency Space Matching

* The Fourier Transform converts spatial
images into frequencies and phases. Can we
use these to match images”?

 The Fourier transform is deterministic, so if
two images are identical, so are their
frequencies and phases.

« Can we tell if two images are similar?




Scaling Functions
* For simplicity, let us focus on 1D functions (the

same principles will apply in 2D)
 |f we scale a function f(x), we get f(ax), where a

IS a constant
2 2 1
) Cos( j;]ux) —isin( Wx)]dx =—F(u

F(f(ax)) = [ f(ax

* What does this say?




Shifting functions

« Similarly, if we shift a function:

o)) = (rme)eof 2R 2 o
= F(u)| cos(27mx,u) + isin(27x u)
* The last term:

— Represents a phase shift
* Not a frequency shift

— the amount of the phase shift is 2xx,
 The inverse is also true
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Convolution
 The definition of convolution is:

h<x>=f<x>®g<x>=_}f<u>g<x+u)du

— The mask g() 1s assumed infinite but zero outside
of a finite range.

— Since the images are ZMUL, cross-correlation 1s
almost an example of convolution




Correlation Theorem

 The Fourier transform of the cross-correlation
5. H(x) = F(s)G*(s)

— F(s) 1s the Fourier transform of f(x)

— G(s) 1s the Fourier transform of g(x)

* G*(s) 1s the complex conjugate of G(s), defined as the
real part of G(s) minus the imaginary part

— H(s) is the Fourier transform of f(x)®g(x)
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S0?

* Go back to the shifting relation. The phase
difference between two identical images shifted

by (X,,y,) 18:
COS(2J‘L’(MXO,V)/O)) + isin(2n(ux0,vy0)) _ o 2rluxoo)
* Why 1s this interesting? Because:
Fl(u,v)F;(u,v)
‘Fl(u,v)F;(u,v)

‘ = cos(Zn(uxo ,vyo)) +1 sin(2n(ux0 ,vyo))
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Back to Correlation

* If two images are similar, the maximum phase
value corresponds to the best shift x,,, y,.

* What 1s the relationship between the height of the

peak and the correlation score of the images under
that shift?

* Parseval’s theorem says that: f 7 (x ix = f H(r) d

* So normalizing source 1mages ‘normalizes
frequency space, and the height of the peak 1s the
correlation score




This Is important...

* To match two (same-sized) images over all
possible translations:
— Cross-correlate in the spatial domain
o O(nZ)
— Or

* Apply DFFT to put images in frequency domain
— O(n log(n))

« Multiply their frequency representations
— O(n)

« Convert back to the spatial domain
— O(n log(n))




Frequency space matching

 \What about the boundaries?

— If two same-sized images are correlated,
aren’t some pixels off the edge?

— F(u) assumes an infinitely repeating pattern
— Equivalent to “wrap-around”

* Otherwise, linear correlation gives the
same result in the spatial and frequency
domains
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