Image Matching, Edges \& Cross Correlation

Lecture \#08
February 13 ${ }^{\text {th }}, 2013$

Similarity Transforms

- So we can compensate for image translation using the shift theorem
- O(n log(n)) correlation in Frequency Space
- Can we compensate for
- image rotation? Yes
- image scaling? Yes
- perspective distortion? No
- How? By using the shift theorem again...

Rotation \rightarrow Translation

- Our goal is to apply a coordinate transformation to the original spatial domain image such that a change in rotation becomes a change in translation.
- How? By converting from Cartesian Coordinates to Polar Coordinates.
- Remember that the Polar Coordinates of a point in 2D are its distance from the origin d and the angle of the vector from the origin to the point ϕ

Polar Coordinates

$\frac{\text { Cartesian }}{[0,0]=255}$
$[0,1]=250$
$[0,2]=224$
$[1,0]=225$
$[1,1]=0$
$[1,2]=255$
$[2,0]=249$
$[2,1]=255$
$[2,2]=235$

Polar $[0,0]=0$	$[1,0]=255$
$[0,45]=0$	$[1,45]=224$
$[0,90]=0$	$[1,90]=250$
$[0,135]=0$	$[1,135]=255$
$[0,180]=0$	$[1,180]=225$
$[0,225]=0$	$[1,225]=249$
$[0,270]=0$	$[1,270]=255$
$[0,315]=0$	$[1,315]=235$

image resampling - use bilinear interpolation

Polar Coordinates (cont.)

-Why convert into polar coordinates?

- Because a cartesian rotation becomes a polar translation
- 2nd coordinate -- angle -- advances...
- Apply Fourier transform to polar image, find maximum shift
- Shift in distance coordinate must be zero!
- Shift implies rotation in cartesian space.

Scale \rightarrow Shift

- What if one image is scaled relative to another?
- Convert image to LogPolar Coordinates
- Just like Polar Coordinates, except that the distance coordinate is expressed by its logarithm
- Now a shift in the distance coordinate is equivalent to a scale change
- Note that the shift theorem finds shifts in both dimensions, so you can match images that are both rotated and scaled.

Limitations

- We can only match rotated and/or scaled image if we know the point they are rotated and/or scaled about!
- We can match translated images or rotated \& scaled images, but not both.
- There is an informal, iterative way to handle small changes in translation, rotation \& scale
- Fix translation, adjust rotation \& scale shift,
- Fix rotation/scale, adjust translation
- Repeat until peak in shift theorem reaches a threshold, or fails to improve

Gross Translation \& Rotation

- The brute force approach to making correlation insensitive to gross translations and rotations is to generate R templates at R different angles.
- Increase complexity by the factor R
- Only accurate if R is fairly large
- Can one guess orientation and only consider one template per pixel location?
- measure the orientation of a pixel?
- What does it even mean?
- One of many ways to motivate Edges

Image as Surface

- View the image as a 3D surface
- For every (x, y) pixel location, the intensity can be thought of as the z (height) value.
- Color images are 5D surfaces hard to think about.
- Color can also be thought of as 3 3D surfaces
- Pretend the surface is continuous
- Every point on the image surface has a direction of maximum change (remember your multivariate calculus?), and a magnitude of change in that direction

Surface in 1D

1D cross-section of simple image surface

Image from http://ars.els-cdn.com/content/image/1-s2.0-S1077314204001675-gr1.jpg

Image Edges

- To find direction and magnitude of change, compute the mag. in any 2 orthogonal directions and interpolate
- Again, this assumes a continuous surface
- WLOG choose the X \& Y directions:
$-d x(x, y)=I(x, y)-I(x-1, y)$
$-d y(x, y)=I(x, y)-I(x, y-1)$
- The edge magnitude and orientation is:

$$
|\Delta|=\sqrt{d x^{2}+d y^{2}} \quad \theta=\cos ^{-1}\left(\frac{d y}{|\Delta|}\right)
$$

Estimating Edge Orientation

- Problem: images are not continuous surfaces
- estimates of dx, dy based on grid sampling
- note that if accurate,

$$
I(x, y)-I(x+1, y)=I(x-1, y)-I(x, y)
$$

- estimating derivatives from two values is highly error prone.

Accurate Edge Estimation

- We want to compute a real-valued function
- The partial derivatives dx \& dy
- All we have to work with are samples at equidistant points
- So model the function in terms of its Taylor series expansion:

$$
f(x+h)=f(x)+\frac{h^{1}}{1!} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\cdots
$$

Accurate (II)

- Look at equations for $f(x+h)$ and $f(x-h)$:

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\cdots \tag{1}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\cdots \tag{2}
\end{align*}
$$

subtract equation 2 from 1
$f(x+h)-f(x-h)=2 h f^{\prime}(x)+\cdots$
and solve for f^{\prime}

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+\cdots
$$

Accurate (III)

- So the best ± 1 mask is $[-1,0,1]$, from

$$
\frac{d}{d x} f(x, y)=\frac{f(x+1, y)-f(x-1, y)}{2}
$$

- As an exercise, the best ± 2 mask is [1,-8,0,8,-1]

$$
\frac{d}{d x} f(x, y)=\frac{-f(x+2, y)+8 f(x+1, y)-8 f(x-1, y)+f(x-2, y)}{12}
$$

Stable Edges (III)

- Of course, pixels are still noisy and pixels are related to adjacent rows.
- The Sobel Edge Masks

$$
\underbrace{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]}_{\mathrm{Dx}} \underset{\text { Dy }}{\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]}
$$

ColoradoState University

Sobel Explanation

- In any row (dx) or column (dy), this is a $[-1,0,1]$ mask to estimate the derivative
- $[1,2,1]$ weights approximate a $\sigma=1$ Gaussian.
- Over-constrained fit of a plane to 9 points
- Minimizes the sum-of-squared error
- Multiply result by $1 / 4$ to keep results <255
- Multiply results by $1 / 8$ to generate 8 -bit response

Rotation-Free Cross Correlation

- Make sure template is centered on an edge
- Measure it's orientation
- For every pixel location:
- compute edge orientation at pixel
- rotate template until pixel edge matches the orientation of the template edge
- rotate using bilinear interpolation
- correlate template with image
- Makes correlation insensitive to rotation
- If edge direction estimates are accurate
- We will find ways to make them more accurate...

