An intro to PCA: Edge Orientation Estimation

Lecture \#09
February 15 th, 2013

Review: Edges

- Convolution with an edge mask estimates the partial derivatives of the image surface.
- The Sobel edge masks are:

$$
\underbrace{\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]}_{\mathrm{Dx}} \underset{\text { Dy }}{\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]}
$$

Using Dx \& Dy (Review)

- Convolution produces two images
- One of partial derivatives in dl/dx
- One of partial derivatives in dl/dy
- At any pixel (x, y):

$$
\text { EdgeMagnitude }(x, y)=\sqrt{(\partial I / \partial x)^{2}+(\partial I / \partial y)^{2}}
$$

EdgeOrientation $(x, y)=\tan ^{-1}\left(\frac{\partial I}{} / \partial y / \partial I / \partial x\right)$

Rotation-Free Correlation

- Pre-process: center the template on an edge
- For every Image window:
- Measure the direction of the edge at the center pixel
- Rotate the template until its center pixel has the same orientation
- Correlate the template \& image window

Rotation-Free Correlation (II)

- Use different template orientation at every position
- At least bilinear interpolation
- Skip positions with no edge
- i.e. $m a g \approx 0$

Problem: edge accuracy

- The orientation of an edge may not be accurate
- Occlusion
- Surface marking (smudge)
- Electronic noise
- Solution: compute dominant edge orientation over a window

Example

5×5 Window

Dx, Dy Plot

Colorado State University

Computing Edge Orientation Dominance

- How do we determine the dominant orientation from a set of [dx, dy] vectors?
- Fit the line that best fits the (dx, dy) points
- Represent edges as a matrix:

$$
G=\left[\begin{array}{llll}
\partial I / \partial x_{1} & \partial I / \partial x_{2} & \ldots & \partial I / \partial x_{n} \\
\partial I / \partial y_{1} & \partial I / \partial y_{2} & \ldots & \partial I / \partial y_{n}
\end{array}\right]
$$

A general solution...

- Mean center the edge data
- Fit a line the minimizes the squared
perpendicular distances

Centered
Dx, Dy Plot

Edge Covariance

- Compute the outer product of G with itself:
- This matrix is called the structure tensor
- What is the semantics of the structure tensor?

Covariance

- Covariance is a measure of whether two signal are linearly related

$$
\operatorname{Cov}(A, B)=\sum\left(A_{i}-\bar{A}\right)\left(B_{i}-\bar{B}\right)
$$

- Note that this is correlation without normalization
- It predicts the linear relationship between the signals
- i.e. it can be used to fit a line to them

Edge Covariance

- The structure tensor is the covariance matrix of the partial derivatives
- It tells you the linear relation between the dx and dy values
- If all the orientations are the same, then dx predicts dy (and vice versa)
- If the orientations are random, dx has no relation to dy.

Introduction to Principal Components Analysis (PCA)

- We can solve the following:

$$
G G^{T}=R^{-1} \lambda R
$$

- Where R is an orthonormal (rotation) matrix and λ is a diagonal matrix with descending values
-What do R and λ tell us?

Eigenvalues and Eigenvectors

- R is a rotation matrix
- Its rows are axes of a new basis
- The $1^{\text {st }}$ row (eigenvector) is the best fit direction
- The $2^{\text {nd }}$ eigenvector is orthogonal to the $1^{\text {st }}$.
- λ contains the eigenvalues
- The eigenvalues are the covariance in the directions of the new bases
- The closed form equation simply computed the cosine of the first eigenvector

Corners (The Harris Operator)

- The structure tensor is the outer product of the partial derivatives with themselves:

$$
C=\left[\begin{array}{cc}
\sum_{i} d x_{i}^{2} & \sum_{i} d x_{i} d y_{i} \\
\sum_{i} d x_{i} d y_{i} & \sum_{i} d y_{i}^{2}
\end{array}\right]
$$

- Consider the Eigenvalues
- Both near zero => no edge
- One large, one near zero => edge
- Both large => a strong corner

Back to Rotation-Free Correlation

- For every source
 window:
- Calculate the edge covariance matrix
- Find the first eigenvector
- Rotate the template to match
- Correlate

