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Recall the goal:  
image matching 

Probe image, registered to gallery 

Registered Gallery of Images 
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Getting practical… 
•  Every (2D) image is “stretched out” into a 

(1D) vector 

– Typically, pixels arranged in scan-line order 
•  But any fixed order will do 

– Use superscripts to denote the image number, 
subscripts for dimensions 

•  So there are a total of N pixels 
–  Images as column vectors 
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Optional - Normalizing Images 
•  Give images zero mean & unit length. 

–  If so, distance between images (points) is 
inversely proportional to correlation 

–  If so, images (points) lie on N-1 dimensional 
hypersphere 
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Mean centering the data set 
•  We want to origin of the coordinate system to be 

the average image in the set, so…  
 

–  Zero mean images are no longer zero mean, but 
samples still lie on a hypersphere 

–  Center of mass is coordinate origin 
–  P is the number of images in the data set 
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Forming X 

•  Now we create the data set matrix X: 

– Note that columns are images, rows are 
dimensions 

– X is an NxP matrix, num pixels x num images. 
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Covariance #1: XXT 

•  Therefore we define the covariance matrix 

– Each term ω defines the covariance between two 
pixel dimensions across the data set 
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PCA ≡ SVD(Ω) 

•  Perform singular value decomposition on 
the covariance matrix: 

– Notation changes:  
•  Λ ≡ diagonal matrix of Eigenvalues 
•  V ≡ matrix of Eigenvectors (Eigenvectors in 

columns) 
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PCA (II) 

– λ’s are the Eigenvalues 

– v’s are the Eigenvectors (unit length, 
orthogonal) 
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What do we have? 
•  A data set of samples expressed as points 
•  The origin at the center of mass 
•  A set of Eigenvectors, describing the axes 

of maximum variance (maximum change) 
– Note that V is an orthonormal basis 

•  A set of Eigenvalues, giving the amount of 
variance along each Eigenvector 

•  At most min(N,P-1) non-zero Eigenvalues 
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Data projection 
•  We can project any data sample xi into the 

space defined by the Eigenvectors: 

•  This is just a geometric rotation, so we can 
easily get xi back again: 
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Data Compression 
•  But what about all the zero Eigenvalues? 

–  If P < N, ∃(N-(P-1)) zero Eigenvectors 
•  Probably more zeroes in practice.  
•  Let K be the number of non-zero Eigenvalues. 

•  So we can drop all but K Eigenvectors 
 

 
•  Note that the projected vector is only K 

elements long! 
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Data Compression (II) 
•  So the compressed representation has  

– ~KN values to store the Eigenvectors 
– PK values to store the compressed images 
– The original data was PN pixels 

•  Data compression if K < PN/(P+N) 
– Further compression if you drop more 

Eigenvectors 
•  Dropping small Eigenvalues results in small errors 
•  Optimal compression in least squared sense 

(Sirovich&Kirby) 
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Data Matching - Review 
•  Assume a database of P images 

–  (Optional) Zero mean and unit length each 
– Center the images to form X 
– Compute V & Λ 
– Drop zero Eigenvalues,  
– Project data 
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Data Matching (II) 
•  Now, introduce a new probe image y 

–  (Optional) Zero mean and unit length y 
– Subtract the data set mean m from y 

– Project Y into the Eigenspace 

– Now find the closest xi 

•  What image xi do you have? 
•  How expensive was it to find? 
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Data Matching (III) 
•  When all non-zero Eigenvectors kept, then  
•  For training images (bases for PCA) 

– The Euclidean distance between images in 
Eigen space is identical to Euclidean distance in 
the original image space. 

•  To the extent new images are “like” the 
training images, then  
– PCA matching is a cheap way compute 

Euclidean distance between many image pairs.  
– And, for zero mean, unit length images,  

•  Image space and PCA space correlation the same. 
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Data Matching (IV) 
•  In practice, assumptions often violated. 

–  If Eigenvectors associated with small (but non-
zero) Eigenvalues are dropped, then minor 
dimensions are removed 

•  May correspond to noise (or may not) 
•  In practice, generally OK (more efficient, minimal 

damage) 
– Other distance measures often outperform 

Euclidean distance 
•  “Why” is a non-trivial question. 
•  Example: Whitened cosine. 
•  Open research topic 
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Covariance #2: XTX 
•  We can also define a covariance matrix 

that defines how images (rather than 
dimensions) co-vary 

•  This is much smaller  
– PxP, instead of NxN 
– Order images squared, not pixels. 

3/7/13	
   CS	
  510,	
  Image	
  Computa5on,	
  ©Ross	
  Beveridge	
  &	
  Bruce	
  Draper	
   18	
  

€ 

Ω = X T X 



The Snapshot Method 
•  Linear algebra tells us that: 

– The Eigenvalues of XXT and XTX are the 
same 

– The Eigenvectors of XXT are X times the 
Eigenvectors of XTX (and re-normalized) 

•  Therefore, compute the Eigenvectors & 
Eigenvalues of the smaller XTX to find the 
Eigenvectors for XXT. 
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Snapshot (II) 

•  Create (centered) X as before. 
•  Create Ω’ = XTX 
•  Compute Ω’ = XTX = V’ΛV’T 

•  Compute V = norm(XV’) 
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Put it together - Eigenfaces 

…	
  …	
  

PCA	
  space	
  projec5on	
  

Training	
  images	
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Training	
  

Tes+ng	
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