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Recall the goal:
Image matching

Probe 1mage, registered to gallery

Registered Gallery of Images
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Getting practical...

* Every (2D) image is “stretched out” into a
(1D) vector

i [ i 1
-x - -xl 90 o0 ,XN
— Typically, pixels arranged in scan-line order
« But any fixed order will do

— Use superscripts to denote the image number,
subscripts for dimensions

« So there are a total of N pixels
Images as column vectors

_— Colorado tate Ulnver51

3/7/13 CS 510, Image Computation, ©Ross Beveridge & Bruce Draper




Optional - Normalizing Images
Give images zero mean & unit length.

— If so, distance between images (points) is
iInversely proportional to correlation

— If so, images (points) lie on N-1 dimensional
hypersphere

i i\
d d
This step can certainly be omitted,; inWhICHICaS e IEICOE B BRI IEiIslo)
no longer applies.
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Mean centering the data set

« We want to origin of the coordinate system to be
the average image in the set, so...

X'=x'-m

1w |
=F;x

— Zero mean images are no longer zero mean, but
samples still lie on a hypersphere

— Center of mass is coordinate origin
— P is the number of images in the data set
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Forming X

* Now we create the data set matrix X:
X=[x"1%"1..1%"]

— Note that columns are images, rows are
dimensions

— X is an NxP matrix, num pixels x num images.
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Covariance #1: XXT

 Therefore we define the covariance matrix
Q=XXx"

(1)1 A (1)1 2

(2 = w,, ,,

— Each term w defines the covariance between two
pixel dimensions across the data set
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PCA = SVD(Q)

* Perform singular value decomposition on
the covariance matrix:

Q=VAV'

QV =AV
— Notation changes:

* A = diagonal matrix of Eigenvalues

* V = matrix of Eigenvectors (Eigenvectors in
columns)
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PCA (Il)

A=|0 A

— A\'s are the Eigenvalues
V=[v1 v, |...|VP]

—V’s are the Eigenvectors (unit length,
orthogonal)
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What do we have?

* A data set of samples expressed as points
* The origin at the center of mass

* A set of Eigenvectors, describing the axes
of maximum variance (maximum change)

— Note that V is an orthonormal basis

* A set of Eigenvalues, giving the amount of
variance along each Eigenvector

* At most min(N,P-1) non-zero Eigenvalues
S
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Data projection

« We can project any data sample x' into the
space defined by the Eigenvectors:

T —i Remember to first center
V this new point/image

* This Is just a geometric rotation, so we can
easily get x back again:

=Vx'
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Data Compression

« But what about all the zero Eigenvalues?
— If P <N, 3(N-(P-1)) zero Eigenvectors
* Probably more zeroes in practice.
» Let K be the number of non-zero Eigenvalues.

* S0 we can drop all but K Eigenvectors
V=[v1 v, |...|VK]

-
=V X

=Vx'
* Note that the projected vector is only K
elements long!
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Data Compression (ll)

* So the compressed representation has
— ~KN values to store the Eigenvectors
— PK values to store the compressed images

— The original data was PN pixels
» Data compression if K < PN/(P+N)
— Further compression if you drop more
Eigenvectors
* Dropping small Eigenvalues results in small errors

« Optimal compression in least squared sense
(Sirovich&Kirby)
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Data Matching - Review

 Assume a database of P images
— (Optional) Zero mean and unit length each
— Center the images to form X
— Compute V & A
— Drop zero Eigenvalues,
— Project data

X=V'X
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Data Matching (Il)

Now, introduce a new probe image y
— (Optional) Zero mean and unit length y
— Subtract the data set mean m from y
y=y—-m
— Project Y into the Elgenspace
y=V'y

— Now find the closest x!
match = Min( x'

~

-y

« What image x' do you have?
* How expensive was it to find?
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Data Matching (11l

 When all non-zero Eigenvectors kept, then

* For training images (bases for PCA)

— The Euclidean distance between images in
Eigen space is identical to Euclidean distance in

the original image space.
* To the extent new images are “like” the
training images, then

— PCA matching is a cheap way compute
Euclidean distance between many image pairs.

— And, for zero mean, unit length images,
* Image space and PCA space correlation the same.
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Data Matching (1V)

In practice, assumptions often violated.

— If Eigenvectors associated with small (but non-
zero) Eigenvalues are dropped, then minor
dimensions are removed

« May correspond to noise (or may not)
* |In practice, generally OK (more efficient, minimal
damage)

— Other distance measures often outperform
Euclidean distance

* “Why" is a non-trivial question.
« Example: Whitened cosine.
* Open research topic
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Covariance #2: XX

* We can also define a covariance matrix
that defines how images (rather than
dimensions) co-vary

— 7 =
Q=X X
 This is much smaller

— PxP, instead of NxN
— Order images squared, not pixels.
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The Snapshot Method

* Linear algebra tells us that:

— The Eigenvalues of XX and X'X are the
same

— The Eigenvectors of XX are X times the
Eigenvectors of X"X (and re-normalized)

* Therefore, compute the Eigenvectors &
Eigenvalues of the smaller X™X to find the
Eigenvectors for XXT,
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Snapshot (Il)

* Create (centered) X as before.
* Create Q' = XX

« Compute Q = XX =VAV'T

« Compute V = norm(XV’)
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Put it together - Eigenfaces

Training K
¥ ywly
Training images ":."‘ ------

Eigenspace
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