### **Linear Correlation Filters**

CS 510 Lecture #19 March 4<sup>th</sup>, 2013





- Rough draft of report due today

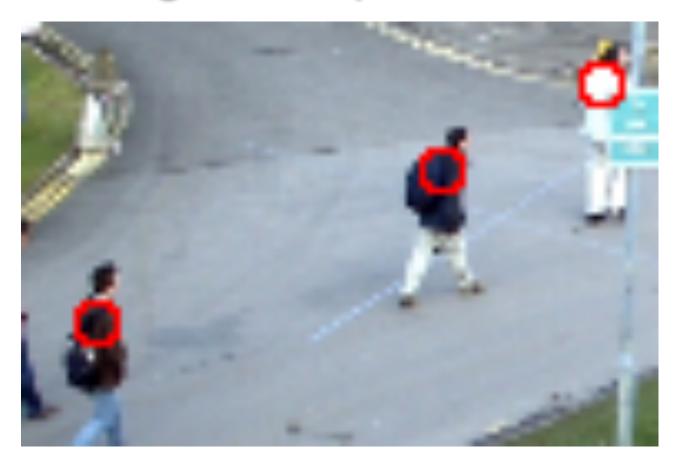
   Mail it to me
- Any questions?





#### Where are we?

- We have looked at image-level matching
  - Whole to whole
  - Part to whole
  - True it is only the tip of the iceberg...
- Next step : feature extraction/matching
- Intermediate step: correlation filters
  - Trained to match specific features.




## **Correlation Filters**

- A *correlation filter* is just a template that you correlate with images
- In Assignment #1, the example eye, ear, etc. were correlation filters
  - But they weren't optimal
  - They were just examples
- How do you create an optimal filter?



#### **Motivating Example**





# Side Issue : Edge Detection

- Clothing appears in all colors/intensities
- To focus on structure, extract edge magnitudes
  - Convolve with Sobel edge masks
  - Compute Dx & Dy for every pixel
  - Edge magnitude is  $\sqrt{(Dx^2 + Dy^2)}$
- Remember: linear filter

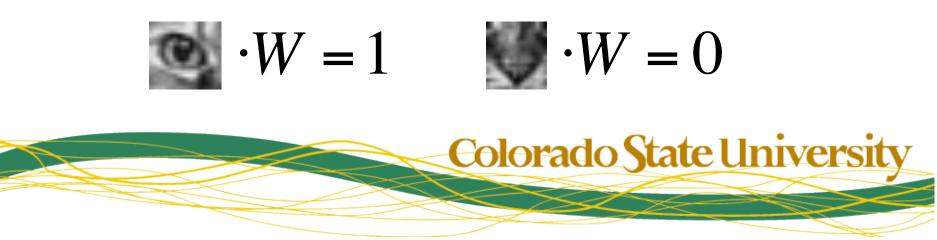


#### **Edge Detection in Practice**





# Main Issues


- Intra-class variation
- Changes in illumination
- Changes in pose
- Differing backgrounds

The challenge: find the pixels the separate targets from background



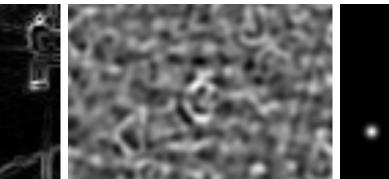
# Simple Example

- Linear correlation is just a dot product
- One goal is for positive samples to produce a positive score (1)
- The other is for negative samples to produce zero scores (0)
- So to find eyes...



# Example (cont.)

- How many solutions are there to the previous example?
- How could you make the solution unique?
- Would it necessarily generalize?
- There is a family of techniques that take
  - Positive examples
  - Negative examples
  - Additional constraint




# CSU Approach (Bolme)

- Don't pick a handful of examples
- Use the (whole) desired response image as the training image
- Put a Gaussian at every target location
  - Sigma 2 is typical
  - Allows response to degrade smoothly with distance



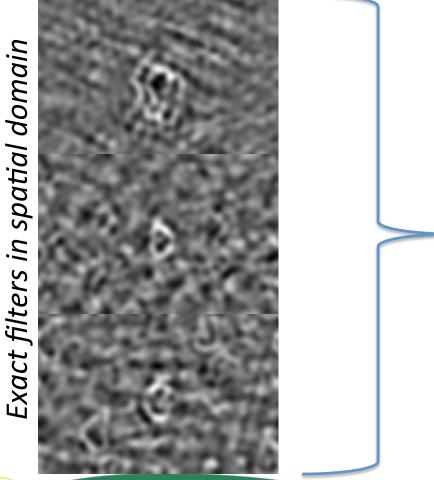






Edge Image (f)

Exact Filter (h)




**Colorado State University** 

 $F \cdot H^* = G$ 

 $H^* = \frac{F}{G}$ 

#### **Average of Exact Synthetic Filters**



$$H^* = \frac{1}{N} \sum_{i} \frac{F_i}{G_i}$$



Image is of h, not H



# **Training statistics**

- 25 annotated target frames
- Training time: 12 seconds
- Result: template
  - In frequency space



#### Detection

- Correlate trained template to every video frame
  - Use frequency domain to speed computation
- Find peaks in correlation images
  - Keep peeks that exceed a threshold

Show Video



#### **MOSSE** filter

Minimize Output Sum of Squared Errors

$$H^* = \min_{H^*} \sum_{i} |F_i \cdot H^* - G_i|^2$$

 This form is more stable for small numbers of training samples

$$H = \frac{\sum_{i}^{i} G_{i} \cdot F^{*}_{i}}{\sum_{i}^{i} F_{i} \cdot F^{*}_{i} + \varepsilon}$$
  
Colorado State University