
Introduction to Features

CS 510
Lecture #13

March 8th, 2013

What is a Feature?

•  A feature is anything that is:
–  Localized
–  Meaningful
–  Detectable & Discrete

•  Features are also intermediate
–  a means, not an end

3/12/13	
 2	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Traditional Hierarchy of Features
(e.g. Szeliski’s book)

•  Edges
•  Corners
•  Chains
•  Line segments
•  Parameterized curves
•  Regions
•  Surface patches
•  Closed Polygons

3/12/13	
 3	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

What is an Edge?
•  An edge is a description of a localized image

pattern
– We need to know what aspect of the pattern we

are measuring

•  An edge is a symbolic feature
–  We need to know what it denotes:

•  surface marking, or
•  surface discontinuity, or
•  shadow (illumination discontinuity)

–  These things have precise positions

3/12/13	
 4	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

The Facet Model
Review

•  The image can be thought of as a gray level
intensity surface
–  piecewise flat (flat facet model)
–  piecewise linear (sloped facet model)
–  piecewise quadratic
–  piecewise cubic
– Example http://www.mirametrics.com/brief_pro_graphics_2.htm

•  Processing implicitly or explicitly estimates
the free parameters.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 5	

Facet Edge Detection
•  Facet edge detectors assume a piecewise

linear model, and calculate the slope of
the planar facet (1st derivative).
–  If we assume that the noise is zero mean, and

increases with the square of distance, then
convolution with the Sobel Edge Operator is
optimal:

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 6	

!

H =

1 2 1
0 0 0
"1 "2 "1

$

%
%
%

&

'

(
(
(
,V =

"1 0 1
"2 0 2
"1 0 1

$

%
%
%

&

'

(
(
(

Mag = H 2 +V 2 , tan) = H V

Examples of Facet Edges

Source	

 Dx Image	

 Dy Image	

3/12/13	
 7	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Properties of Facet Edges/Masks

•  Magnitude = (dx2 + dy2)1/2

•  Orientation = tan-1 dy/dx

•  Dy/Dx responses are signed

•  Edges tend to be “thick”

•  Edge Masks: sum of weights is zero

•  Smoothing masks: sum of weights is one

3/12/13	
 8	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Symbolic Edge Detection
•  Although Sobel edges are optimal estimators

for the slope of a planar facet, as symbols
they:
– Are continuous; need to be thresholded
– May be “thick”; need to be localized
– Are isolated; need to be grouped into longer lines

•  If they correspond to scene structure (e.g.
discontinuities), we need a model of how
scene structures map to images.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 9	

Canny Edge Detection (Step 1)
•  To maximize the likelihood of finding step-

edges,
1.  Smooth image with a Gaussian filter

•  Size is determined by noise model
2.  Compute image gradients over the same

size mask

•  The bigger the mask, the better detection
is but the worse localization is...

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 10	

Canny Edge Detection (step 2)

•  Non-maximal suppression
– So far, edges are still “thick”
– For every edge pixel:

•  1) Calculate direction of edge (gradient)
•  2) Check neighbors in edge direction
•  If either neighbor is “stronger”, set edge to zero.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 11	

Drexel	
 Tutorial	
 -­‐	

hKp://www.pages.drexel.edu/~weg22/can_tut.html	

Canny Edge Detection (step 3)

•  We still have continuous values that we need
to threshold

•  Algorithm takes two thresholds: high & low
– Any pixel with edge strength above the high

threshold is an edge
– Any pixel above the low threshold and next to an

edge is an edge
•  Iteratively label edges

–  they “grow out” from high points.
– This is called hysteresis.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 12	

Canny Example

Source image Canny: sigma = 2.0,
low = 0.40, high = 0.90

3/12/13	
 13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Canny Example (cont.)

Sigma = 3.0
low = 0.4, high = 0.9

Sigma = 1.0
low = 0.4, high = 0.9

3/12/13	
 14	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Canny Example (III)

Sigma = 2.0
low = 0.4, high = 0.99

Sigma = 2.0
low = 0.4, high = 0.6

3/12/13	
 15	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Canny Example (IV)

Sigma = 2.0
low = 0.2, high = 0.9

Sigma = 2.0
low = 0.6, high = 0.9

3/12/13	
 16	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

2nd Order Edge - Laplacians
•  Alternative approach is to look for zero

crossings of the (approximation to) the
second derivative.

•  Nice overview
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 17	

!

0 "1 0
"1 4 "1
0 "1 0

Image Contents Matching

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 18	

Image	
 #1	
 Image	
 #2	

Im

ag
e	

Fe
at
ur
es
	

Fe
at
ur
e	

gr
ou

ps
	

In
cr
ea
si
ng

	

A
bs
tr
ac
6o

n	

Some	
 Photo	
 Shop	
 liber6es	
 have	
 been	
 taken	
 to	
 illustrate	
 the	
 larger	
 point	
 	

Hierarchical Feature Extraction
•  Most features are extracted by combining a

small set of primitive features (edges,
corners, regions)
– Grouping: which pixels form an edges/corners/

curves group?
– Model Fitting: what structure best describes the

group?
•  Simple example: The Hough Transform

– Groups points into lines
–  (patented in 1962)

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 19	

Hough Transform: Grouping
•  The idea of the Hough transform is that a change in

representation converts a point grouping problem into a
peak detection problem.

•  Standard line representations:
–  y = mx + b -- compact, but problems with vertical

lines
–  (x0, y0) + t(x1, y1) -- your raytracer used this form, but

it is highly redundant (4 free parameters)
–  ax + by + c = 0 -- Bresenham’s uses this form. Still

redundant (3 free parameters)
•  How else might you represent a line?

3/12/13	
 20	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Hough Grouping (cont.)
•  Represent infinite lines as (φ,ρ):

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 21	

ρ

φ

Hough Grouping (III)
•  Why? This representation is:

–  Small: only two free parameters (like y=mx+b)
–  Finite in all parameters : 0 <= ρ< √(row2+col2), 0 <= φ

< 2π
–  Unique: only one representation per line

•  General Idea:
–  The Hough space (φ,ρ) represents every possible line

segment
–  Next step - use discrete Hough space
–  Let every point “vote for” any line is might belong to.

3/12/13	
 22	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

•  Every edge has a location and position, so it can be part
of only one (infinitely extended) line.

•  Co-linear edges map to one bucket in Hough space.

Hough Grouping: Directed Edges

φ

ρ

3/12/13	
 23	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Hough Grouping: Edges
•  Reduces line grouping to peak detection

– Each edge votes for a bucket (line)
–  # of votes equates to support

•  The # of participating edges.
– Position of bucket provides the φ, ρ parameters

•  Problem: if “true” line parameters are on the
boundary of a bucket, supporting data may be
split

•  Solution: smooth the histogram (Hough
image) before selecting peaks.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 24	

Hough Fitting

•  After finding the peaks in the Hough
Transform - still two potential problems:
– Resolution limited by bucket size.
–  Infinite lines, not line segments

•  Both of these problems can be fixed,
–  If you kept a linked list of edges (not just #)
– Of course, this is more expensive...

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 25	

Hough Fitting (II)
•  Sort your edges

–  rotate edge points according to ρ
– sort them by (rotated) x coordinate

•  Look for gaps
– have the user provide a “max gap” threshold
–  if two edges (in the sorted list) are more than

max gap apart, break the line into segments
–  if there are enough edges in a given segment,

fit a straight line to the points

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 26	

Sidebar: Fitting Straight Lines to Points

•  In n dimensions, compute the Eigenvalues
& Eigenvectors and take the Eigenvector
associated with the largest Eigenvalue.

•  In 2 dimensions, its simpler:
–  for p points (x,y),

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 27	

!

a = x2
p
" , b = xy, c = y2

p
"

p
"

sin2# = ±
b

b2 + a $ c()2
alternatively cos2# = ±

a $ c

b2 + a $ c()2

Hough Example

Source Image Hough Space

3/12/13	
 28	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

Hough Example (II)

Edge data
Line data

3/12/13	
 29	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	

“Vote Early and Often”
Underconstrained Cases
•  In the case of points (rather than edges)

– Points have locations but not orientations
– A point is consistent with infinitely many lines

•  Every line that passes through the point
–  It is not consistent with all lines, however.

•  So points vote for every line they are
consistent with
– more likely to find accidental mismatches
–  higher threshold for peaks in Hough space.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 30	

Under constrained point voting
•  Edge points are consistent with many lines.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 31	

φ

ρ

Finding Circles
•  This same trick (an underconstrained

Hough space) can be used to find circles
–  Circles have three parameters:

•  Their center (x,y)
•  Their radius r

–  Create a 3D digitized Hough space (x,y,r)
•  Every edge (with a direction) implies a line

that the center must lie along.
•  The radius is determined by the position of

the edge & center.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 32	

x

y

x

y

r

Circles (cont.)
•  So, every edge is consistent with an

infinite number of circles.
•  These circles lie on a line in 3D parameter

space - Vote for all of them.
– This is 3D scan line conversion -- Bresenham!

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 33	

Circles - Two Point Method
•  Consider all pairs of edge points

–  In practice, enforce a minimum separation.

3/12/13	

CS	
 510,	
 Image	
 Computa4on,	
 ©Ross	

Beveridge	
 &	
 Bruce	
 Draper	
 34	

