Focus of Attention

CS 510 Lecture #15 April 8th, 2013

What is attention?

- "The selective aspect of processing" Kosslyn¹
- "processes that enable an observer to recruit resources for processing selected aspects of the retinal image more fully than nonselected aspects" – Palmer²

Overt vs. Covert Attention

- Overt attention: observable movements of eyes, head & body to orient eyes
 - Foveas: 90% of receptors, ±2°
 - Allocation to 3D point in space
 - Vergence & focus
 - Average dwell time: ~300ms⁴
 - Saccadic movement
 - Very fast: ~30ms, up to 900°/sec
 - Suppression: no input during saccade
 - World appears as sequence of displaced, small, high resolution, stereo images with low resolution peripheries

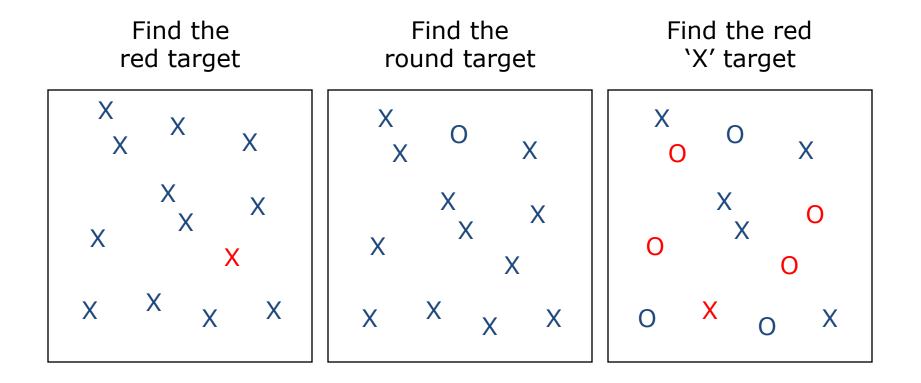
Overt vs. Covert Attention (II)

- You don't process all the data in your foveal image
- Covert attention: selection of retinal data to process ("inner eye")
 - Cannot be observed directly
 - Its existence is not in dispute
 - Its form is a matter of intense debate
 - Assumption: insufficient resources necessitate covert attention.
- Covert attention is the subject of this lecture

3 Models of Covert Attention

- 1. Feature Integration Theory
 - "Pre-attentive" low-level features computed in parallel across the image
 - E.g. color, edge orientations, motion
 - In visual search, attention can jump to locations based on pre-attentive features ("pop-out")
 - Conjunctions of features or complex features require sequential search
 - O Implicitly assumes attention is like a spotlight

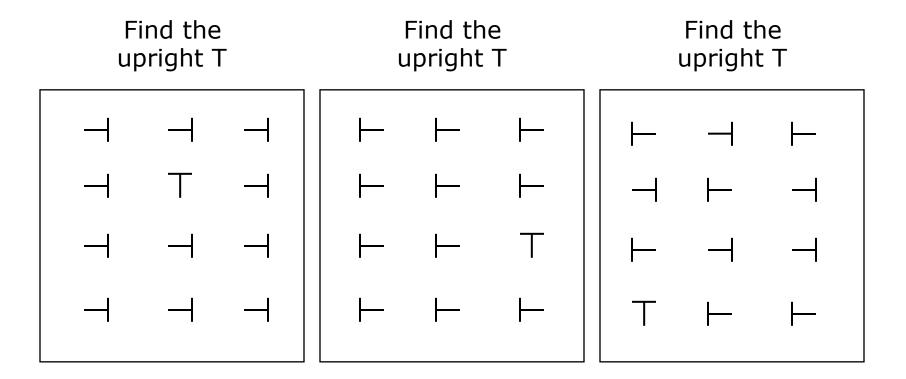
Feature Integration Theory (II)



3 Models (II)

- 2. Integrated Competition Hypothesis
 - O "Pop-out" effect depends on:
 - Homogeneity of distractors
 - Homogeneity of targets (seq. pres.)
 - O Primary role of attention is segmentation (or grouping)
 - O Low-level features important as the basis of segmentation

Integrated Competition Hypothesis (II)



Task: Which Line is Longer?

3 Models (III)

- Inattentional Blindness Theory
 - When concentrating on the task, most subjects will not see additional objects
 - Depends on semantics of additional object
 - Additional objects are interpreted
 - Cause priming effects
 - Hypothesis: all objects in visual field are interpreted
 - Attention is a late effect, caused by attentional bottleneck

How does this effect computer vision?

- Scale space theory
 - Image pyramids
- Difference of Gaussians (DoGs)
 - Impulse detection
 - Determines location & scale
- Refinements
 - Corners
 - Entropy

Resolution

• Definition:

The *resolution* of an image is the inverse of the spatial area covered by each pixel. This depends on:

- 1. The image size of the camera
- 2. The field of view of the lens
- 3. The distance to the target

Note that doubling the distance to the target halves the image resolution.

Scale space

- The appearance of an object is a function of the image resolution:
 - A checkerboard becomes a uniform gray surface as the resolution decreases.
 - A thin black bar goes from being a bar (with parallel lines) to a single line to nothing.
- The goal of scale space theory is to simulate what happens to the appearance of an object as resolution decreases.

Base Case: Raw Image

- We model pixels in raw images a point-wise intensity estimates, covering no area.
 - Not quite right: pixels sample over a small area
 - Areas don't overlap
 - Except for blooming
 - Gaps between areas
- Highly sensitive to microtranlsations
- Same model our ray tracers used...

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Scale Space

- We want pixels to average information over an area, to improve stability and reduce aliasing
- We being by convolving the image with a Gaussian with σ = 1
 - Now most of the information comes from an area one pixel in size
- σ = 1 is the "base" resolution

Varying Resolution

- To cut the resolution in half, we convolve the original image with $G(\sigma=2)$.
- To cut the resolution by a quarter, use σ = 4, etc.
- Problem: this is very expensive
 - To cover a lot of scales, the image gets convolved a lot of times
 - The convolution masks keep getting bigger!

Image pyramids

- Fortunately, the lower the resolution, the fewer pixels you need.
- $I \otimes G(\sigma=a) = (I \otimes G(\sigma=b)) \otimes G(\sigma=c)$, iff $a^2=b^2+c^2$
- Therefore, start with an image with σ =1.
 - Convolve it with G($\sigma = \sqrt{3}$)
 - This produces an image with σ =2
 - Now subsample every other pixel
 - Since you have halved the resolution
 - Repeat

Image Pyramids (II)

- The result is an image pyramid
 - Every image ½ the width and height of its parent
 - Every image has σ =1
 - after subsampling
- Total cost of pyramid construction:
 - 1 convolution & downsample
 - + 1/4(convolution & downsample)
 - + 1/16(convolution &...)
- Total cost < 1.5*(convolution & downsample)
- Note: it is possible to have intermediate images within scales
 - But only downsample when $\sigma\text{=}2$

Colorado

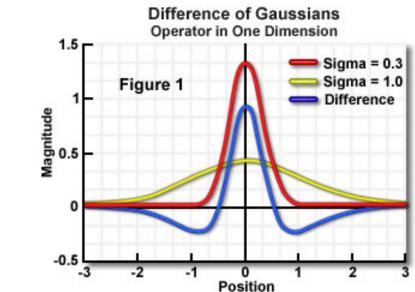
Focus of Attention

- The goal of focus of attention is to:
 - 1. Pick locations & scales in an image
 - 2. That convey information about the scene
 - 3. Would be identified again if the object occurs in another image
 - i.e. repeatable

Method: find impulses in f(x, y, σ)

Image source: http://micro.magnet.fsu.edu/ primer/java/digitalimaging/processing/diffgaussians/diffgaussiansfigure1.jpg Difference of Gaussians (DoG)

 A Difference-Of-Gaussians (DoG) function is an impulse filter, constructed by subtracting two Gaussians with different

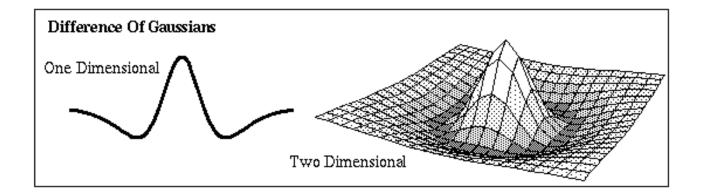


 σ 'S.

Image source: http://www.liden.cc/Visionary/Images/DIFFERENCE_OF_GAUSSIANS.GIF

DoG (II)

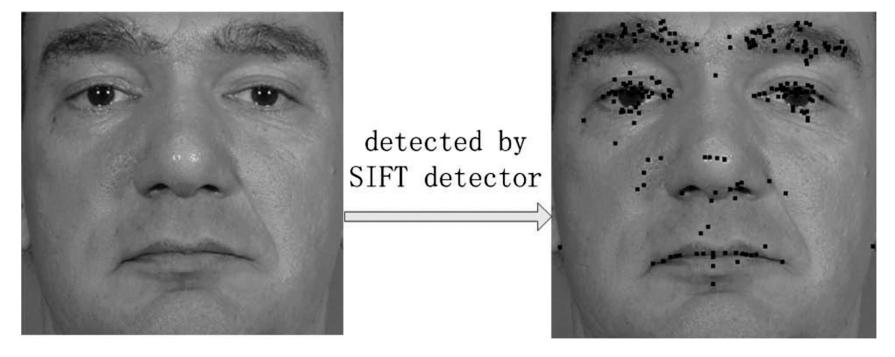
- DoGs are also called the "Mexican Hat" filter when 2D
- Strong positive response: on-center, off-surround
- Strong negative response: off-center, on-surround



Focus of Attention

- Basic focus-of-attention strategy
 - Build an image pyramid
 - Subtract one layer from another
 - This creates images of DoG responses
 - $I \otimes (M-N) = (I \otimes M) (I \otimes N)$
 - Find extrema in x, y, and σ of the DoG responses
 - Both positive and negative
- The image windows around the DoG extrema are fixedsize "focus of attention" windows.

SIFT (DoG) Interest Points Example



http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1089401

This image shows:

- Scale (circle size)
- Dominant Orientation

 1st eigenvector of Harris operator

http://

4/10/13

computervisionblog.wordpress.com/tag/ sift-feature-point/

CS 510, Image

Beveridge & Bruce Draper

