Image Segmentation

CS 510 Lecture #14 April 1, 2013

Image Segmentation

- Goal:
 - Break the image into a set of non-overlapping tiles (a.k.a. regions)
 - Unachievable ideal #1: regions \rightarrow objects
 - Unachievable ideal #2: regions \rightarrow surfaces
- Available information
 - Pixel homogeneity (group similar pixels)
 - Edges as boundaries
 - (Top-down scenario): statistical surface models

Segmentation: Example

Beveridge & Bruce Draper

Background: Clustering

- Task: given a set of samples, collect them into groups of similar items
- Assumptions
 - K : the number of clusters
 - Every sample is a point in feature space
- Three main algorithms
 - K-Means
 - Expectation Maximization (EM)
 - Spectral clustering (not covered here)

Simple Clustering : K-Means

- Select K samples as random, make them cluster centers
 - There are useful variations on this step
- Iterate until no change:
 - Assign every sample to the nearest cluster center
 - Move every cluster center to the mean of the samples assigned to it

K-Means : Problem with Unequal Variances x</t

- Implicit assumption: Gaussian processes with equal variance
- Two Gaussians, but different variances
- Need to model each cluster, not just its center

Measuring Cluster Variance

- Measure *covariance* Σ of PDFs:
 - Let X be the DxN set of mean-subtracted samples:

$$X = \begin{bmatrix} \vdots & \cdots & \vdots \\ s_1 & \cdots & s_n \\ \vdots & \cdots & \vdots \end{bmatrix}$$

– Then Σ is the covariance matrix:

$$\Sigma = \frac{1}{N} X X^{T}$$
Colorado State University

The Hard-Assignment Problem

+++ Which Gaussian generated these samples? + **Colorado State University**

Solution: soft assignments

- Which process generated the points in the middle?
 - Either could have

4/8/13

- For every sample/cluster pair, compute the likelihood that the sample was generated by the cluster
 - Note: the value is never zero
 - This is called "soft assignment"

CS 510. mao

- Samples not uniquely assigned to clusters

Beveridge & Bruce Drape

Colorado State University

Even Harder Overlapping Gaussians

Expectation Maximization (EM)

- Initialize clusters using random samples, uniform variance
- Iterate until minimal change
 - For every sample
 - Compute the likelihood that it could be generated by each cluster
 - Normalize likelihoods so that the sum is 1
 - The sample exists!
 - For every cluster
 - Compute mean and covariance matrix using probabilityweighted samples
- If necessary, assign samples to most likely cluster

Bottom-up Segmentation

- Approach #1: Group similar pixels
- Example Algorithm: Comaniciu & Meer
 - Step 1: consider every pixel as a point in 5D
 - (r, g, b, x, y)
 - Step 2: cluster pixels into K categories
 - C&M use EM
 - Step 3: form connected components of pixels with the same labels
 - Step 4: Eliminate tiny regions
 - merge into most similar neighbors
- Many other algs have been proposed...

Bottom-up Segmentation

- Approach #2: Edge based
- Simplest method: zero-crossing
 - Compute the zero-crossing of the second derivative of the intensity surface
 - This will break the image up into "regions"
 - Merge adjacent regions that are "similar enough"

Example

Source: www.spatial.maine.edu/~peggy/Teaching/SIE_434/Lecture17/opt Sity

CS 510, Image Computation, SE Beveridge & Bruce Draper

4/8/13

Bottom-up Segmentation

- You may note a certain lack of enthusiasm on my part
 - Segmentation is an important problem
 - Segmentation has been studied for 30 years
 - But, I don't think reliable bottom-up segmentation is possible (or necessary).

Top-down Segmentation

- If you know what you are looking for...
 Foreground vs background (not tiling)
- Statistical/spatial foreground object model
 -P(x,y) = prob that pixel (x,y) is foreground
 -1 P(x,y) = prob that pixel (x,y) is background
- Then you can divide the image into
 - Likely to be foreground region, and
 - Other

Foreground Model

Step 1: Create a graph in which foreground is a node, background is a node, and every pixel is a node

Step 2: Connect every pixel (x,y) to the foreground node with an edge of strength p(x,y). Connect every pixel (x,y) to the background node with an edge of strength 1-p(x,y)

Step 3: Connect every pixel to its four neighbors with an edge whose strength is inversely proportional to the image edge strength

Step 4: Find the max-flow partition of this graph. Pixels that remain connected to Foreground are foreground, the rest are background.

Graph Cut Examples

The Big Question

- We have edges, lines, regions & corners – And we'll pick up more features soon...
- How do we put them together?
 - Ah, research ... no one really knows
 - Rigid, hierarchical schemes don't seem to work
 - Evidence combination works better

A Simple Example

Find the blue ball in this picture (simple, right?)

Example (cont.)

- Approaches:
 - Hough for a circle
 - Find a connected circle of edges
 - Find bottom-up a blue region (roughly circular)
 - Learn ball properties, find top-down region
- Evidence combination : all of the above!

