Recognition via "Constellations" and "Bags of Features"

CS 510 Lecture #17 April 12th, 2013

Programming Assignment #3

- Any questions?
- How is it going?
- What will you be asked to do with the features you collect?

Object recognition!

Airplanes

Motorcyles

Spotted Cats

Approach #1: Constellations of Features

- Learn spatial relationships among key parts of an object class.
- Parts are detected via special-purpose part detectors or by interest points.
- Detection is done by trying to fit the constellation model to the detected parts.

- Step 1: Sample Images
 - Fergus et al. use "Scale Saliency"
 - Other sampling methods common

• Step 2: Learn Typical Parts

- Feature Representation vs. Raw Pixels

• Step 3: Learn Part Layout

• Step 4: Classify Novel Images – Maximum Likely Part-Model

Constellations & GHT

- Note the similarity of constellations and the Generalized Hough Transform (GHT)
 - Instead of edges, parts
 - Parts relative to reference point
 - Modeled as a Gaussian around a mean position
 - Collect probabilistic votes for object position
- Parts may be learned by
 - Training a correlation filter
 - Training a classifier (e.g. SVM)
 - Building special-purpose detectors from standard features

Constellation – Pros & Cons

- Pros
 - Robust To…
 - Partial Occlusion
 - Intra-class Variability (some)
 - Scale
 - Weakly Supervised Learning
- Cons
 - Not robust to large deformations or pose changes
 - Sensitive to Part Detection (Sampling)

Where are we?

- Introducing general recognition frameworks
 - Constellations
 - Bag of Words (next)
- Pending issues
 - Underlying features
 - Feature representations
 - Classifiers
- We will go back and look more at these, once we have a framework for reference...

- Approach is to represent an image as an order-less set of features (hence "bag").
- Image is sampled at 1000's of locations to derive a histogram of occurring features.
- Histogram matching/discrimination done for classification.

- Step 1: Sample Image (Densely)
 - Dense Interest Points
 - Regular Grid of Points
 - Random Points

- Step 2: Cluster Features
 - Similar Features Grouped Together
 - "Visual Codebook"

• Step 3: Represent Image as Histogram of Features (Order-less Collection)

- Step 4: Classify Feature Vector
 - Support Vector Machine (SVM) Typical

Bag of Features: Pros & Cons

- Pros
 - Computationally Simple
 - Weakly Supervised
 - (Surprisingly) State-of-the-Art Performance
 - Perhaps more robust than Constellations
- Cons
 - Order-less Collection lacks spatial info
 - Not well-suited for segmentation/localization
 - Not well-suited for object identification

Web-Demo: Bag of Features

- Bag of Features methods can be applied to image retrieval.
- Demo of "Video Google" project: <u>Oxford Visual Geometry Group - Video</u> <u>Google Demo</u>
- URL: http://www.robots.ox.ac.uk/~vgg/ research/vgoogle/index.html

