
Classifiers 

CS 510  
Lecture #18 

April 18th, 2013 



Programming Assignment #3 

•  Due today 
– Any questions? 
– How is it going? 
 



Where are we? 

•  Two general approaches to recognition 
– Constellations 
– Bag of Features 

•  Each require a classifier 
– So let’s talk about classifiers 

Note:	  we	  will	  surf	  through	  material	  that	  
makes	  up	  most	  of	  CS540	  and	  CS545,	  and	  

part	  of	  CS548	  



Basic Idea : Generalization 
Training Samples: 

Label	   F1	   F2	   F3	   F4	   F5	  

True	   3.6	   3.0	  	   -‐1.2	   9.8	   -‐0.5	  

True	   2.0	   1.0	   0.9	   1.3	   3.1	  

False	   -‐1.3	   -‐4.1	   0.8	   1.1	   -‐8.0	  

True	   -‐1.4	   -‐3.9	   0.1	   1.2	   2.5	  

False	   -‐9.0	   -‐2.6	   -‐0.5	   1.0	   1.1	  

Test Samples: 
Label	   F1	   F2	   F3	   F4	   F5	  

???	   -‐3.6	   0.3	   0.1	   -‐4.4	   0.9	  



Visualization 
•  Samples as points in a feature space 

– Example from last slide : 5 dimensional 
•  Label as color (or symbol) 

– Example : red for true, black for false 
•  Goal: segment feature space 

– Every region contains samples of one label 
– All of feature space in some region 
– New samples assigned label of their region  



Classifiers : methods of segmenting 
feature space 
•  Perceptrons (linear) 
•  Support Vector Machines (linear) 
•  Multi-layer feed-forward networks 

(differentiable functions)  
•  Bayesian (elliptical) 
•  Decision Trees (recursive linear) 
•  Nearest Neighbor (multiple ellipses) 



Perceptrons 
•  The first machine learning algorithm 
•  Perceptrons divide linearly separable data 

Goal: find the 
parameters of a 
hyper-plane that 
separates the classes 



Perceptrons (II) 

•  Definition : 

Where x is a data sample (feature vector) 
w is the learned weight vector 
b is a learned bias term (why?) 

f x( ) = 1 if w ⋅x+b > 0
0 otherwise     
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Perceptron Learning Rule 

•  D = {(x1, d1), (x2, d2), …, (xn, dn)}, where di 
are the desired labels (0/1). 

•  Algorithm: 
– Randomly initialize w & b (small values) 
–  Iteratively update the weights until convergence 

– Same for bias term b 

wi t +1( ) = wi t( )+α dj − f x j( )( ) xi, j



Why does this work? 

•  Correctly labeled instances do not change 
the weights 
–  (di-f(xi)) = 0 

•  Incorrect instances 
–  Increment weights if di > f(xi) 
– Decrement weights if f(xi) < di 
– By an amount that depends on xi,j 



Problems with Perceptrons 

•  Limited to linear divisions 
– Converges if data is linearly separable 
– Otherwise, use a difference threshold to 

terminate algorithm 
•  Expensive : O(NDC) 

– N = number of samples 
– D = number of feature dimensions 
– C = number of cycles (iterations) 



Better Linear Classifier: SVM 
•  Like perceptron, produces a weight vector 

and bias term 
•  Unlike perceptron 

– Maximizes the margin between classes 
•  Distance between hyper-plane and nearby samples 

– Updates ignore samples far from boundary 
•  More efficient 

–  Helps when D is large 
•  Samples far from boundary do not influence its angle 

– For the math of how it does this, take CS548 



Key to SVMs : Kernels 
•  Linear classifiers are limited 

–  Data typically isn’t linearly separable 
•  Unless you project into a higher dimensional 

space 
–  Linear functions in higher dimensions may be 

complex functions in the original feature space 
•  Simple example 

–  Given D features, create D2+D dimensional vectors 
–  Contains all D original features, plus 
–  XiXj for all i, j 
–  2nd-order functions in the original space are linear in 

the expanded space! 



Radial Basis Kernels 
•  Radial basis functions (RBFs) are functions 

whose value depends on distance from a 
point 
– Typically Gaussian, e.g. 
 

•  Given N training samples, create N RBFs, 
one centered at each sample 

•  Convert samples into points in N dimensions, 
where each dimension is a distance to a 
training sample 

f x( ) ≈ e
− x−c
σ



Kernelized Data 
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Multi-layer Perceptrons 
•  Another approach is to directly learn non-

linear boundaries in the original feature 
space 

•  Perceptrons are linear, but you can add a  
sigmoid function: 

•  Perceptrons + sigmoid are non-linear 

ϕ v( ) = 1+ e−v( )
−1

g x( ) =ϕ f x( )( ) =ϕ w ⋅ x + b( )



Multi-layer Perceptrons (II) 

•  Create multiple perceptrons (with sigmoids) 
•  Feed their outputs into another perceptron 

– Non-linear combination of non-linear functions 
•  Backpropagation training rule 

– Minimizes the squared sum of errors 
– Computes the derivative of each weight/bias 

for each training sample 
–  Iteratively alters weights to minimize the errors 



Illustration of a Multi-layer 
Perceptron 
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Backpropation 

•  Every sample comes with its target output 
•  Minimize the squared error: 

•  By computing the partial derivative of E 
with regard to each weight wi,j 

•  Adjust the weights to minimize the error 

E = di − f x( )( )
i
∑

2



Backpropagation (II) 
E = di − f xi( )( )

2

i
∑

E = di −ϕ wh1yi + bh( )( )
2

i
∑

E = di −ϕ wh1 ϕ wi1xi + bi1( ),ϕ wi2xi + bi2( ),…#$ %&+ bh( )( )
2

i
∑

∂E
∂wij

= 2 di − f xi( )( )
∂f xi( )
∂wiji

∑

∂E
∂wij

= 2 di − f xi( )( ) f xi( ) 1− f xi( )( )( )wij
i
∑



Multi-layer Perceptron Illustration 
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