Classifiers

CS 510 Lecture #18 April 18th, 2013

Programming Assignment #3

- Due today
 - Any questions?
 - How is it going?

Where are we?

- Two general approaches to recognition
 - Constellations
 - Bag of Features
- Each require a classifier
 - So let's talk about classifiers

Note: we will surf through material that makes up most of CS540 and CS545, and part of CS548

Colorado State University

Basic Idea : Generalization

Training Samples:

Label	F1	F2	F3	F4	F5
True	3.6	3.0	-1.2	9.8	-0.5
True	2.0	1.0	0.9	1.3	3.1
False	-1.3	-4.1	0.8	1.1	-8.0
True	-1.4	-3.9	0.1	1.2	2.5
False	-9.0	-2.6	-0.5	1.0	1.1

Test Samples:

Label	F1	F2	F3	F4	F5
???	-3.6	0.3	0.1	-4.4	0.9

Visualization

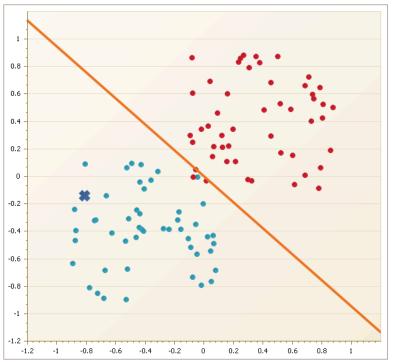
- Samples as points in a feature space
 - Example from last slide : 5 dimensional
- Label as color (or symbol)
 - Example : red for true, black for false
- Goal: segment feature space
 - Every region contains samples of one label
 - All of feature space in some region
 - New samples assigned label of their region

Classifiers : methods of segmenting feature space

- Perceptrons (linear)
- Support Vector Machines (linear)
- Multi-layer feed-forward networks (differentiable functions)
- Bayesian (elliptical)
- Decision Trees (recursive linear)
- Nearest Neighbor (multiple ellipses)

Perceptrons

- The first machine learning algorithm
- Perceptrons divide linearly separable data



Goal: find the parameters of a hyper-plane that separates the classes

Perceptrons (II)

• Definition :

$$f(x) = \begin{cases} 1 \text{ if } w \cdot x + b > 0 \\ 0 \text{ otherwise} \end{cases}$$

Where x is a data sample (feature vector) w is the learned weight vector b is a learned bias term (why?)

Perceptron Learning Rule

- D = {(x₁, d₁), (x₂, d₂), ..., (x_n, d_n)}, where d_i are the desired labels (0/1).
- Algorithm:
 - Randomly initialize w & b (small values)
 - Iteratively update the weights until convergence

$$w_i(t+1) = w_i(t) + \alpha \left(d_j - f(x_j) \right) x_{i,j}$$

– Same for bias term b

Why does this work?

- Correctly labeled instances do not change the weights
 - $-(d_i-f(x_i)) = 0$
- Incorrect instances
 - Increment weights if $d_i > f(x_i)$
 - Decrement weights if $f(x_i) < d_i$
 - By an amount that depends on $x_{i,i}$

Problems with Perceptrons

- Limited to linear divisions
 - Converges if data is linearly separable
 - Otherwise, use a difference threshold to terminate algorithm
- Expensive : O(NDC)
 - -N = number of samples
 - D = number of feature dimensions
 - C = number of cycles (iterations)

Better Linear Classifier: SVM

- Like perceptron, produces a weight vector and bias term
- Unlike perceptron
 - Maximizes the margin between classes
 - Distance between hyper-plane and nearby samples
 - Updates ignore samples far from boundary
 - More efficient
 - Helps when D is large
 - Samples far from boundary do not influence its angle
 - For the math of how it does this, take CS548

Key to SVMs : Kernels

- Linear classifiers are limited
 - Data typically isn't linearly separable
- Unless you project into a higher dimensional space
 - Linear functions in higher dimensions may be complex functions in the original feature space
- Simple example
 - Given D features, create D²+D dimensional vectors
 - Contains all D original features, plus
 - $X_i X_j$ for all i, j
 - 2nd-order functions in the original space are linear in the expanded space!

Radial Basis Kernels

 Radial basis functions (RBFs) are functions whose value depends on distance from a point

– Typically Gaussian, e.g. $f(x) \approx e^{-\sigma}$

- Given N training samples, create N RBFs, one centered at each sample
- Convert samples into points in N dimensions, where each dimension is a distance to a training sample

Kernelized Data



Multi-layer Perceptrons

- Another approach is to directly learn nonlinear boundaries in the original feature space
- Perceptrons are linear, but you can add a sigmoid function:

$$\varphi(v) = \left(1 + e^{-v}\right)^{-1}$$

$$g(x) = \varphi(f(x)) = \varphi(w \cdot x + b)$$

Perceptrons + sigmoid are non-linear

Multi-layer Perceptrons (II)

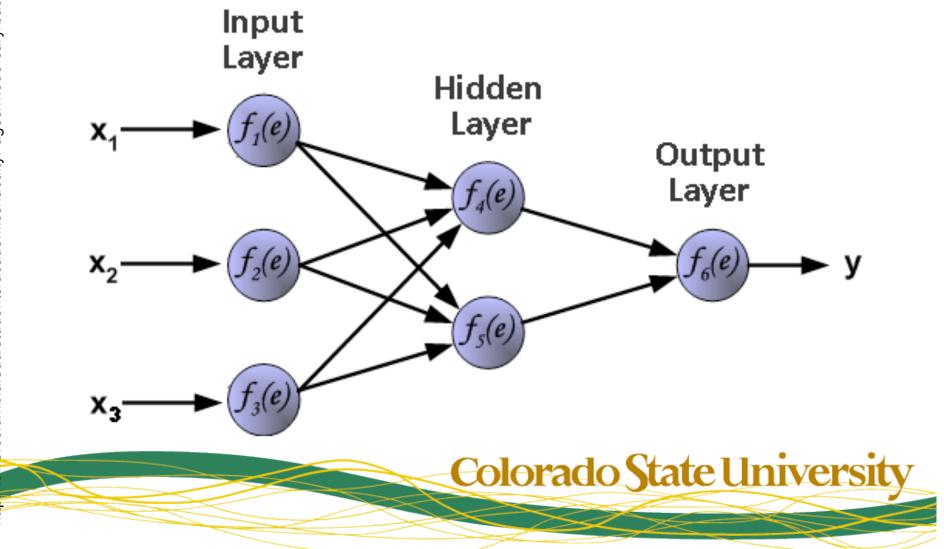
- Create multiple perceptrons (with sigmoids)
- Feed their outputs into another perceptron

 Non-linear combination of non-linear functions
- Backpropagation training rule
 - Minimizes the squared sum of errors
 - Computes the derivative of each weight/bias for each training sample

- Iteratively alters weights to minimize the errors

Colorado State University

Illustration of a Multi-layer Perceptron



Backpropation

- Every sample comes with its target output
- Minimize the squared error:

$$E = \sum_{i} \left(d_i - f(x) \right)^2$$

- By computing the partial derivative of E with regard to each weight w_{i,i}
- Adjust the weights to minimize the error

Backpropagation (II)

$$E = \sum_{i} (d_{i} - f(x_{i}))^{2}$$

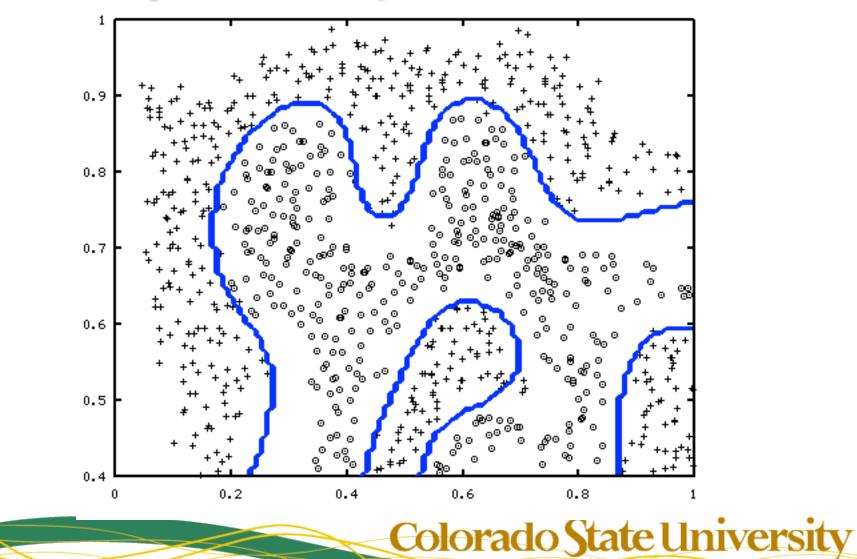
$$E = \sum_{i} (d_{i} - \varphi(w_{h1}y_{i} + b_{h}))^{2}$$

$$E = \sum_{i} (d_{i} - \varphi(w_{h1}[\varphi(w_{i1}x_{i} + b_{i1}), \varphi(w_{i2}x_{i} + b_{i2}), ...] + b_{h}))^{2}$$

$$\frac{\partial E}{\partial w_{ij}} = \sum_{i} 2(d_{i} - f(x_{i})) \frac{\partial f(x_{i})}{\partial w_{ij}}$$

$$\frac{\partial E}{\partial w_{ij}} = 2\sum_{i} (d_{i} - f(x_{i})) (f(x_{i})(1 - f(x_{i}))) w_{ij}$$

Multi-layer Perceptron Illustration



http<mark>://stack</mark>overflow.com/questions/14440658/multi-layer-perceptron-finding-the-separating-curve