
Classifiers

CS 510
Lecture #18

April 18th, 2013

Programming Assignment #3

•  Due today
– Any questions?
– How is it going?

Where are we?

•  Two general approaches to recognition
– Constellations
– Bag of Features

•  Each require a classifier
– So let’s talk about classifiers

Note:	 we	 will	 surf	 through	 material	 that	
makes	 up	 most	 of	 CS540	 and	 CS545,	 and	

part	 of	 CS548	

Basic Idea : Generalization
Training Samples:

Label	 F1	 F2	 F3	 F4	 F5	

True	 3.6	 3.0	 	 -‐1.2	 9.8	 -‐0.5	

True	 2.0	 1.0	 0.9	 1.3	 3.1	

False	 -‐1.3	 -‐4.1	 0.8	 1.1	 -‐8.0	

True	 -‐1.4	 -‐3.9	 0.1	 1.2	 2.5	

False	 -‐9.0	 -‐2.6	 -‐0.5	 1.0	 1.1	

Test Samples:
Label	 F1	 F2	 F3	 F4	 F5	

???	 -‐3.6	 0.3	 0.1	 -‐4.4	 0.9	

Visualization
•  Samples as points in a feature space

– Example from last slide : 5 dimensional
•  Label as color (or symbol)

– Example : red for true, black for false
•  Goal: segment feature space

– Every region contains samples of one label
– All of feature space in some region
– New samples assigned label of their region

Classifiers : methods of segmenting
feature space
•  Perceptrons (linear)
•  Support Vector Machines (linear)
•  Multi-layer feed-forward networks

(differentiable functions)
•  Bayesian (elliptical)
•  Decision Trees (recursive linear)
•  Nearest Neighbor (multiple ellipses)

Perceptrons
•  The first machine learning algorithm
•  Perceptrons divide linearly separable data

Goal: find the
parameters of a
hyper-plane that
separates the classes

Perceptrons (II)

•  Definition :

Where x is a data sample (feature vector)
w is the learned weight vector
b is a learned bias term (why?)

f x() = 1 if w ⋅x+b > 0
0 otherwise

"
#
$

Perceptron Learning Rule

•  D = {(x1, d1), (x2, d2), …, (xn, dn)}, where di
are the desired labels (0/1).

•  Algorithm:
– Randomly initialize w & b (small values)
–  Iteratively update the weights until convergence

– Same for bias term b

wi t +1() = wi t()+α dj − f x j()() xi, j

Why does this work?

•  Correctly labeled instances do not change
the weights
–  (di-f(xi)) = 0

•  Incorrect instances
–  Increment weights if di > f(xi)
– Decrement weights if f(xi) < di
– By an amount that depends on xi,j

Problems with Perceptrons

•  Limited to linear divisions
– Converges if data is linearly separable
– Otherwise, use a difference threshold to

terminate algorithm
•  Expensive : O(NDC)

– N = number of samples
– D = number of feature dimensions
– C = number of cycles (iterations)

Better Linear Classifier: SVM
•  Like perceptron, produces a weight vector

and bias term
•  Unlike perceptron

– Maximizes the margin between classes
•  Distance between hyper-plane and nearby samples

– Updates ignore samples far from boundary
•  More efficient

–  Helps when D is large
•  Samples far from boundary do not influence its angle

– For the math of how it does this, take CS548

Key to SVMs : Kernels
•  Linear classifiers are limited

–  Data typically isn’t linearly separable
•  Unless you project into a higher dimensional

space
–  Linear functions in higher dimensions may be

complex functions in the original feature space
•  Simple example

–  Given D features, create D2+D dimensional vectors
–  Contains all D original features, plus
–  XiXj for all i, j
–  2nd-order functions in the original space are linear in

the expanded space!

Radial Basis Kernels
•  Radial basis functions (RBFs) are functions

whose value depends on distance from a
point
– Typically Gaussian, e.g.

•  Given N training samples, create N RBFs,
one centered at each sample

•  Convert samples into points in N dimensions,
where each dimension is a distance to a
training sample

f x() ≈ e
− x−c
σ

Kernelized Data

c

c

c

c
c

x

d1
d2

d3
d4

d3

d1	

d2	

d3	

d4	

d5	

Data in original 2D data space Data in 5D Kernel Space

è

Multi-layer Perceptrons
•  Another approach is to directly learn non-

linear boundaries in the original feature
space

•  Perceptrons are linear, but you can add a
sigmoid function:

•  Perceptrons + sigmoid are non-linear

ϕ v() = 1+ e−v()
−1

g x() =ϕ f x()() =ϕ w ⋅ x + b()

Multi-layer Perceptrons (II)

•  Create multiple perceptrons (with sigmoids)
•  Feed their outputs into another perceptron

– Non-linear combination of non-linear functions
•  Backpropagation training rule

– Minimizes the squared sum of errors
– Computes the derivative of each weight/bias

for each training sample
–  Iteratively alters weights to minimize the errors

Illustration of a Multi-layer
Perceptron

ht
tp

://
lo

w
er

co
lu

m
bi

a.
ed

u/
st

ud
en

ts
/a

ca
de

m
ic

s/
fa

cu
lty

P
ag

es
/rh

od
e-

ca
ry

/b
ac

kp
ro

pa
ga

tio
n.

ht
m

Backpropation

•  Every sample comes with its target output
•  Minimize the squared error:

•  By computing the partial derivative of E
with regard to each weight wi,j

•  Adjust the weights to minimize the error

E = di − f x()()
i
∑

2

Backpropagation (II)
E = di − f xi()()

2

i
∑

E = di −ϕ wh1yi + bh()()
2

i
∑

E = di −ϕ wh1 ϕ wi1xi + bi1(),ϕ wi2xi + bi2(),…#$ %&+ bh()()
2

i
∑

∂E
∂wij

= 2 di − f xi()()
∂f xi()
∂wiji

∑

∂E
∂wij

= 2 di − f xi()() f xi() 1− f xi()()()wij
i
∑

Multi-layer Perceptron Illustration
ht

tp
://

st
ac

ko
ve

rfl
ow

.c
om

/q
ue

st
io

ns
/1

44
40

65
8/

m
ul

ti-
la

ye
r-

pe
rc

ep
tro

n-
fin

di
ng

-th
e-

se
pa

ra
tin

g-
cu

rv
e

