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Programming Assignment #4 

•  Due two weeks from today 
– Any questions? 
– How is it going? 
 



Where are we? 
•  Learning about classifiers from a user’s 

perspective 
•  SVMs & Backpropagation Networks 

– Highly effective 
– Hard to analyze 

•  Bayesian Networks 
– Combine statistical and semantic knowledge 
– Harder to use / slower to use 

•  Today: Decision trees & Lookup tables 



Decision Trees : basic idea 

•  Work in feature space (no kernels) 
•  Simple linear separators 
•  Approximate complex functions by 

recursive division 



Illustration 
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Step	  1:	  	  

Threshold	  F1	  

Step	  2:	  For	  F1	  >	  t1	  	  
Threshold	  F2	  

Step	  3:	  For	  F1	  >	  t1	  
&	  F2	  >	  t2,	  Threshold	  

F1	  



Decision Trees 
•  Are all (or most) of your samples from a 

single class? If so, done. 
•  Pick a feature and threshold to divide your 

data into two sets 
•  Recurse on both sets 

Ques7on:	  how	  do	  you	  pick	  which	  feature	  to	  threshold,	  and	  
what	  the	  threshold	  should	  be?	  



Entropy 

•  A quick detour into Shannon’s entropy… 
– Let X be a r.v. with values {x1,…xm} 
– Then the entropy H of X is defined as : 

– More relevantly, for a finite sample : 

H X( ) = E I X( )( ) = E − ln P X( )( )"# $%

H X( ) = P xi( ) I xi( ) = − P xi( ) logb P xi( )
i
∑

i
∑



Entropy Intuitions 
•  If P(xi) = 1 :  

–  for all j, P(xj) = 0  
–  so H(X) = 0 

•  Or, if P(xi) = P(xj) for all i & j : 
– P(xi) = 1/m 
–  so H(X) = -m Σ(1/m)logm(1/m) = 1 

•  In general, entropy is maximized by uniform 
distributions and minimized by impulses 

•  Entropy can be intuited as the amount of 
information gained by sampling the random 
value 



Information Gain 

•  The information gain as a result of dividing 
a set T into a & b is : 

•  Or, for finite samples, 

H T( )−H T | a,b( )

P x1( ) log P xi( )( )∑ − P xi | a( )
a
∑ P xi | a( )− P xi | b( )P xi | b( )

b
∑



Decision Trees & Information Gain 
•  Intuitively, information gain measures how 

much more you know about the samples 
as a result of dividing them 

•  Choose the feature and threshold that 
maximizes the information gain 

•  How? Try them all… 



Overfitting 
•  What if a positive training sample is 

surrounded by negative ones? 
– Following the previous algorithm will result in 

a small positive zone around the positive 
training sample 

– But what if the example is an error? (or fluke?) 
•  Overfitting : performance can be 100% on 

the training samples, but poor on novel 
test data 



Training/Validation/Test 
•  To test generalization, the test data must be 

distinct from the training data 
•  But without using the test data, how do you 

know when to stop splitting the data? 
•  Answer: 

– Split the training data into training + validation 
– On every recursion 

•  Find the split that improves the training data the most 
•  Stop if the split does not improve validation 

performance 



The Simplest Classifier : Lookup 
Tables 
•  SVMs, Nets, and Decision Trees carve up 

feature space based on samples 
•  Why not just memorize the training 

samples? 
•  Given a test sample, measure the distance 

to every training sample, and take the 
closest 

•  This is called a nearest neighbor classifier 



Geometric Interpretation of Nearest 
Neighbor Classifiers  

F1 

F2 

x 

x 

x 

o 



K-nearest neighbors 
•  Problem: Nearest neighbor classifiers overfit 
•  Solution: find the K nearest neighbors, let 

them vote for the best label 
– Set K to be odd (to avoid ties) 

•  Problem: Computing the distance to every 
training sample is expensive 

•  Solution: Approximate Nearest Neighbor 
trees find the (approx) nearest neighbor in 
log(n) comparisons 


