
Decision Trees &
Nearest Neighbor Classifiers

CS 510
Lecture #20

April 26th, 2013

Programming Assignment #4

•  Due two weeks from today
– Any questions?
– How is it going?

Where are we?
•  Learning about classifiers from a user’s

perspective
•  SVMs & Backpropagation Networks

– Highly effective
– Hard to analyze

•  Bayesian Networks
– Combine statistical and semantic knowledge
– Harder to use / slower to use

•  Today: Decision trees & Lookup tables

Decision Trees : basic idea

•  Work in feature space (no kernels)
•  Simple linear separators
•  Approximate complex functions by

recursive division

Illustration

X
X

X
X

X

X

X
X

X
X

X

X

X
X

X

X X
X

X X
X

X
X

X

X
X O

O
O

O
O

O

F1

F2
Step	 1:	 	

Threshold	 F1	

Step	 2:	 For	 F1	 >	 t1	 	
Threshold	 F2	

Step	 3:	 For	 F1	 >	 t1	
&	 F2	 >	 t2,	 Threshold	

F1	

Decision Trees
•  Are all (or most) of your samples from a

single class? If so, done.
•  Pick a feature and threshold to divide your

data into two sets
•  Recurse on both sets

Ques7on:	 how	 do	 you	 pick	 which	 feature	 to	 threshold,	 and	
what	 the	 threshold	 should	 be?	

Entropy

•  A quick detour into Shannon’s entropy…
– Let X be a r.v. with values {x1,…xm}
– Then the entropy H of X is defined as :

– More relevantly, for a finite sample :

H X() = E I X()() = E − ln P X()()"# $%

H X() = P xi() I xi() = − P xi() logb P xi()
i
∑

i
∑

Entropy Intuitions
•  If P(xi) = 1 :

–  for all j, P(xj) = 0
–  so H(X) = 0

•  Or, if P(xi) = P(xj) for all i & j :
– P(xi) = 1/m
–  so H(X) = -m Σ(1/m)logm(1/m) = 1

•  In general, entropy is maximized by uniform
distributions and minimized by impulses

•  Entropy can be intuited as the amount of
information gained by sampling the random
value

Information Gain

•  The information gain as a result of dividing
a set T into a & b is :

•  Or, for finite samples,

H T()−H T | a,b()

P x1() log P xi()()∑ − P xi | a()
a
∑ P xi | a()− P xi | b()P xi | b()

b
∑

Decision Trees & Information Gain
•  Intuitively, information gain measures how

much more you know about the samples
as a result of dividing them

•  Choose the feature and threshold that
maximizes the information gain

•  How? Try them all…

Overfitting
•  What if a positive training sample is

surrounded by negative ones?
– Following the previous algorithm will result in

a small positive zone around the positive
training sample

– But what if the example is an error? (or fluke?)
•  Overfitting : performance can be 100% on

the training samples, but poor on novel
test data

Training/Validation/Test
•  To test generalization, the test data must be

distinct from the training data
•  But without using the test data, how do you

know when to stop splitting the data?
•  Answer:

– Split the training data into training + validation
– On every recursion

•  Find the split that improves the training data the most
•  Stop if the split does not improve validation

performance

The Simplest Classifier : Lookup
Tables
•  SVMs, Nets, and Decision Trees carve up

feature space based on samples
•  Why not just memorize the training

samples?
•  Given a test sample, measure the distance

to every training sample, and take the
closest

•  This is called a nearest neighbor classifier

Geometric Interpretation of Nearest
Neighbor Classifiers

F1

F2

x

x

x

o

K-nearest neighbors
•  Problem: Nearest neighbor classifiers overfit
•  Solution: find the K nearest neighbors, let

them vote for the best label
– Set K to be odd (to avoid ties)

•  Problem: Computing the distance to every
training sample is expensive

•  Solution: Approximate Nearest Neighbor
trees find the (approx) nearest neighbor in
log(n) comparisons

