Feature Descriptors

CS 510 Lecture #21 April 29th, 2013

Programming Assignment #4

- Due two weeks from today
 - Any questions?
 - How is it going?

Where are we?

- We have two umbrella schemes for object recognition
 - Bag of Features, Constellations
- We bootstrap these with feature detections
 - Interest points, regions, etc.
- To implement these, we looked at
 - Clustering (K-Means, EM)
 - Classification (SVM, Backprop, Bayes nets, Decision trees, Nearest neighbors)
- These algorithms view samples as points in highdimensional feature spaces.

Where do the features come from?

High-dimensional Feature Descriptors

- Goal: describe the properties of image features
 - "similar" features should be near each other in feature descriptor space
 - "dissimilar" features should not be
 - Insensitive to changes in
 - Viewpoint
 - Scale
 - Illumination

Terminology Confusion

- Feature : a distinctive local property of an image
 - Interest point
 - Region
 - Line, curve, etc.
- Descriptor : a high dimensional vector describing a feature
 - Vectorized image patch
 - SIFT descriptor, LBP, Haar, ...

When we say feature space, we typically mean feature descriptor space

SIFT Interest Point Descriptor

- SIFT Interest Points are extrema of the DoG responses to an image pyramid
- SIFT descriptors are 128-dimensional vectors describing the image patch around a SIFT interest Point
 - SURF descriptors are very similar (but avoid the patent issues)
- In OpenCV, you can compute the SURF descriptor for any (x,y,s) image point
 - Even if its not a SIFT/SURF interest point

Review: Interest Points

- Properties
 - Location (x,y)
 - Scale
 - Measured in octaves
 - SIFT: 1/3 octaves

SIFT Descriptor Step 1: Scale

- If scale ≠ 1, image is down-scaled around the interest point
 - Every octave is a power of 2
 - Non-integer octaves require bilinear image interpolation (see beginning of course)
- SIFT descriptors are based on the 16x16 scaled image patch around the interest point

Step 2: Rotation

- Goal: compensate for in-plane rotation
- Calculate the intensity derivatives in (x,y) of the 16x16 scaled image patch
 - Convolution with Sobel masks
 - Produces (dl/dx, dl/dy) for every pixel
- Produce the structure tensor:

Step 2: Rotation (cont.)

- The first eigenvector of the structure tensor is the dominant edge direction
- Rotate the scaled image patch so that the x axis is aligned with the dominant edge

direction

Step 3: Localized Edge Orientation Histograms

- The 1st 2 steps produce a scaled and rotated 16x16 image patch
- Divide this patch with a 4x4 grid. Each cell contains 4x4 pixels.

Step 3: Localized Edge Orientation Histograms (cont.)

- For each grid cell, histogram the rotated (dx, dy) edges
 - Histogram buckets are edge orientations
 - 8 orientation buckets (45° each)
 - Weights voted by edge magnitude
 - $\sqrt{(dx)^2 + (dy)^2}$
 - Smoothed by a $1/2\sigma$ Gaussian
- Feature vector is the concatenation of 16 8-bucket histograms (128 dimensions)

SIFT descriptors: why?

- Two points are similar if:
 - They have similar nearby edges (orientation & strength)
 - In similar positions, relative to the points
- Descriptors are insensitive to:
 - Scale (points are rescaled)
 - In-plane rotation (points are rotated to dominant edge direction)
 - Average illumination (based on edges; assuming no clipping or floor effects)

SIFT descriptors: why? (cont.)

- Sensitivity is minimized with regard to:
 - Small translations (± 1pixel)
 - Histograms insensitive to movements within 4x4 grid cell
 - Edge weight smoothing minimizes boundary effects
 - Small affine distortions
 - Small viewpoint changes can be roughly approximated by small changes in in-plane rotation and translation

Feature Vector Length Intuition

- 128 dimensions is in feature vector "sweet spot"
 - Too few dimensions → not enough ways for samples to differ
 - Too many dimensions → distributions become uniform
 - Many of the best feature descriptors are in the range [50, 500] in length

HoG: Histogram of Gradients

- HoG is a variation on SIFT descriptors
 - Operates on image patches (not necessarily around interest points)
 - No compensation for scale or rotation
 - Computes magnitude-weighted edge orientation histograms (like SIFT)
 - Allows for different number of cells, cell shapes, and orientation bin counts
 - Biggest difference: *descriptor blocks*

HoG Descriptor Blocks

- HoG descriptors are applied to larger image patches, which may have internal changes in illumination
- HoG descriptors use more cells (to cover large patches)
- Cells grouped in descriptor blocks
 - Descriptor blocks overlap; cells are in more than one block

Descriptor block normalization

- A normalization constant is calculated for every descriptor block
- Based on edge magnitudes within the block
 - Most often based on sum of Euclidean lengths
 - Other normalization function get played with
- Edge magnitudes are normalizes prior to histogram voting

Texture: Localized Binary Patterns (LBP)

- A feature vector to describe the texture within an image (patch)
- Like SIFT & HoG, begin by dividing the image patch into localized cells
- Compute a histogram for each cell
- Concatenate the histograms of the cells into a longer vector

LBP (theory)

- The difference is that in LBP, a texture measure is histogrammed (not edges)
- For every pixel, do the following:
 - Evenly sample 8 points on a circle of radius r, centered at the pixel
 - Interpolate pixel values (bilinearly) as needed
 - For each sample, return '1' if sample is brighter than center pixel, '0' otherwise
 - Interpret string of 8 bits as a binary integer
 - 0 to 255
- Create a histogram of the 256 texture values

LBP Illustrated (Scholarpedia)

The value of the LBP code of a pixel (x_c, y_c) is given by:

4. Multiply by powers of two and sum

LBP (practice)

- Problem: 256 bins is "too many"
 - Concatenation creates vectors outside of "sweet spot" (length > 500)
 - Most values in histogram are zero
- Solution: transitions in 8-bit vector are rare
 - Count how many 1's are followed by 0's (and vice-versa)
 - 90+% of pixels in practice have fewer than 2 transitions
 - So just histogram these!
- Pattern transition counts
 - Two patterns have 0 transitions (all 1's, all 0's)
 - 16 patterns have 1 transition
 - 32 patterns have 2 transitions
- 48-dimension LBP
 - Histogram all 1 & 2 transition patterns
- 51-dimension LBP
 - Add 0 transition patterns, and one bin for "other"

LBP Applied

http://www.mathworks.com/matlabcentral/fileexchange/36484-local-binary-patterns

Iconic Representation

- A lower-dimensional representation of a point (or small image patch)
- Result of multi-scale convolution with loworder wavelets
- "Steerable" response at orientation θ_i predicts the response at θ_i .
- Responses are independent of each other

Iconic Representation Masks

- Each row is a scale
- 10 masks per scale
- Masks are "steerable"

