Felzenswalb

CS 510 Lecture #21 April 29th, 2013

Programming Assignment #4

- Due one week from Friday
 - Any questions?
 - How is it going?

Where are we?

- We have two umbrella schemes for object recognition
 - Bag of Features, Constellations
- We bootstrap these with feature detections
 - Interest points, regions, etc.
- We convert these to feature descriptions
 - SIFT, HoG, LBP, Iconinc
- We group and label them
 - Clustering (K-Means, EM)
 - Classification (SVM, Backprop, Bayes nets, Decision trees, Nearest neighbors)
- I promised a return to Constellations.... Felzenswalb!

Felzenswalb's Goals

- Model objects are parts
 - whose positions are inter-related
 - whose appearance is probabilistic
- Solve for positions & appearance simultaneously & efficiently
- Train model from (labeled) examples

Bayesian Basis

- Let I be an image
- Let $\Theta = \{u_1, ..., u_n\}$ be an object model
 - U_i is a model of an object part
 - To be described more later
- Let $L = \{I_1, \dots, I_n\}$ be a configuration
 - A position for each part

$p(L \mid I, \theta) \propto p(I \mid L, \theta) p(L \mid \theta)$

Bayesian Basis II

- Let's not surf this equation
 - $\mathsf{P}(\mathsf{L}|\mathsf{I}, \theta)$ is the likelihood of an object location, given an image and object model
 - The L that maximizes $P(L|I,\theta)$ is the most likely location for the object
 - The sum of $P(L|I,\theta)$ over all L is the probability that the object is in the image.
- Note that $P(L,\theta) = P(L|\theta)P(\theta)$
- Note its proportional, not equal
 - We dropped P(θ), the *a-priori* for the object
 - Similarly, we dropped $P(I,\theta)$
- But these don't determine which L is maximal

More Bayesian Basis

- OK, that was only moderately helpful
- But if we assume that parts don't overlap...

$$p(I|L,\theta) \propto \prod p(I|l_i,u_i)$$

 Note that this is only a statement about image formation. *Minus overlap*, its reasonable

Location Modeling

- GHT models locations relative to a reference point
 - But if you model the human body, the hand position depends on the forearm, which depends on the upper arm, which depends on the torso...
- Felzenswalb models objects as a acyclic graph of related parts
 - Nodes are object parts
 - Edges are relative positional constraints

Location II $p(L \mid \theta) = p(L \mid E, c) = \prod_{(v_i, v_j) \in E} p(l_i, l_j \mid c_{i,j})$

- E are the edges in the graph – Undirected, must be acyclic
- C describes the relation between i and j – In practice, a Gaussian centered at a mean distance, so that $||l_i - l_j|| = -\log p(l_i, l_j | c_{ij})$

Location in Practice

$$p(l_i, l_j \mid c_{ij}) \propto N(T_{ij}(l_i) - T_{ji}(l_j), 0, D_{ij})$$

- Where T & D are connection parameters encoded by C
 - T's are translations expected between parts
 - D is a diagonal covariance matrix, giving expected distance variations
- N is a normal distribution

More on Location

- The Graph θ=(E,c) is a restricted form of Bayesian Net
 - Edges capture conditional dependencies
 - Restricted to a tree
 - Accounts for articulation
 - Fails to account for global effects like pose under perspective projection
- "In practice" restricted to simple Gaussians
 - Assumes favored (default) position
 - Distances, not angles
 - Is this a good model?

Stepping Back

• We started with

$$p(L|I,\theta) \propto p(I|L,\theta) p(L|\theta)$$

• We reduced $p(L|\theta)$ to $p(L|\theta) = \prod_{(v_i,v_j)\in E} p(l_i, l_j | c_{i,j})$ $p(L|\theta) \propto \prod_{ij} N(T_{ij}(l_i) - T_{ji}(l_j), 0, D_{ij})$

P(I|L,θ)

- This is the probability of generating the image, given object θ at position L
- We have already assumed that object parts don't overlap or occlude each other
- Therefore

$$P(I | L, \theta) \propto \prod_{i} P(I | l_i, u_i)$$

P(I|I_i,u_i)

- Here, Felzenswalb get wishy-washy

 Points out many methods could be used
- But what he uses is:
 - Object parts are modeled as points in iconic representation space (~10 dimensions)
 - Every object part has a diagonal coavariance matric in iconic representation space
 - The prob. of an observed point is inversely proportional to its distance in iconic space

 $P(I|I_i, u_i)$ – continued $P(I | l_i, u_i) \propto N(\alpha(l_i), \mu_i, \Sigma_i)$

- Where
 - $-\alpha(I_i)$ is the "iconic index" at I_i .
 - $-\mu_i$ is the mean "iconic index" for the part
 - $-\Sigma_i$ is the covariance of the "iconic index"

Putting it all together

$$p(I \mid L, \theta) \propto \prod_{i} N(\alpha(l_i), \mu_i, \Sigma_i) \prod_{ij} N(T_{ij}(l_i) - T_{ji}(l_j), 0, D_{ij})$$

- We have an equation!!!
- Two remaining problems:
 - 1. Where does the model come from?
 - 2. How to (efficiently) find arg max L?

Training Felzenswalb

• Training samples have labeled points

Training Felzenswalb (II)

- For every part
 - Collect all training samples of that part
 - Compute α for every sample
 - Estimate $\mu,\,\Sigma$ for the part
- For every pair (i,j) of connected parts in $\boldsymbol{\theta}$
 - Collect samples of pairs
 - Estimate T_{ij} (half the vector from I to j)
 - Estimate D, the covariance matrix of part distances

Training Felzenswalb (III)

- There is even a heuristic for learning the connections between parts
 - Compute the full covariance matrix D
 - Take the largest off-diagonal term, connect those two parts
 - These points depend most strongly on each other
 - Repeatedly take the next largest off-diagonal term
 - As long as it doesn't introduce a cycle
 - Until all parts are connected
- Note that some dependencies will be missed
 - But in general, they will be the smaller ones
 - The conditional independence created by the graph is only approximate, anyway

Intuitions

- The pieces of the model are not sophisticated
 - Appearances modeled as points in iconic representation space
 - Variations in appearance as distances in iconic space
 - Relative positions as vectors + Gaussian noise
- Power comes from the combination of lots of unsophisticated models
- Simple models make training easy

Solving For ArgMax L

$$p(I \mid L, \theta) \propto \prod_{i} N(\alpha(l_i), \mu_i, \Sigma_i) \prod_{ij} N(T_{ij}(l_i) - T_{ji}(l_j), 0, D_{ij})$$

- An inefficient solution is easy
 - Given n parts, and a WxH image
 - There are WxH choose n possible L's.
 - Solve for each, take the max
- Solving for ArgMax L is NP-Hard if all parts are connected (i.e. T is full)

O(h²n) Solution

- A configuration *L* maps every part *i* to an image location (x,y)
 - Let H be the grid of all points (x,y)
 - May be courser than the original image resolution
- $P(I|L,\theta)$ is a product of terms of parts and limited part pairs
 - Part pairs only for connected parts in the dependency graph
- The tree-shaped dependency graph has traversal orders such that:
 - Any node, when visited, is connected to at most one other node that hasn't already been visited
 - Traversal begins at a leaf (obviously)
- Find ArgMax L by binding parts to locations in this order
 - Similar to Viterbi

O(h²n) Solution (continued)

- Create an hxn table L
 - The rows are positions (points in H)
 - The columns are parts, in the traversal order
- $L[i,j] = \operatorname{ArgMax} L_{1,...,j-1} P(I|L_{1,...,j-1}, L_{j=i}, \theta)$
- Intuitively, L[i,j] is the P(I|L,θ) if part j is bound to location i, and parts 1...j-1 are bound optimally.
- $L[i,j] = Max_k L[k,j-1] N(\alpha(I_i),\mu_j,\Sigma_j) N(T_{kj}-T_{jk},0,D_k)$
- This can be computed in O(h²n) time

Efficient Solution (surfed)

- O(h²n) is still too slow (h is large)
- O(hn) algorithm based on not trying all positions for all points
 - Given a set K points on a grid, it is possible to compute the distance to the nearest point in K for all grid points in O(k) time [Borgefors 1986]
 - This can be modified for probabilities (not distances)
 - This allows L[i,j] to be estimated without considering all previous bindings K
 - Computing only a fixed number reduced the complexity to O(hn)

