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Programming Assignment #4 

•  Due one week from Friday 
– Any questions? 
– How is it going? 
 



Where are we? 
•  We have two umbrella schemes for object recognition 

–  Bag of Features, Constellations 
•  We bootstrap these with feature detections 

–  Interest points, regions, etc. 
•  We convert these to feature descriptions 

–  SIFT, HoG, LBP,  Iconinc 
•  We group and label them 

–  Clustering (K-Means, EM) 
–  Classification (SVM, Backprop, Bayes nets, Decision trees, 

Nearest neighbors) 

•  I promised a return to Constellations…. Felzenswalb! 



Felzenswalb’s Goals 

•  Model objects are parts  
– whose positions are inter-related 
– whose appearance is probabilistic 

•  Solve for positions & appearance 
simultaneously & efficiently 

•  Train model from (labeled) examples 



Bayesian Basis 
•  Let I be an image 
•  Let Θ = {u1, …, un} be an object model 

– Ui is a model of an object part 
– To be described more later 

•  Let L={l1,…,ln} be a configuration 
– A position for each part 

p L | I,θ( )∝ p I | L,θ( ) p L |θ( )



Bayesian Basis II 
•  Let’s not surf this equation 

–  P(L|I,θ) is the likelihood of an object location, given an 
image and object model 

–  The L that maximizes P(L|I,θ) is the most likely 
location for the object 

–  The sum of P(L|I,θ) over all L is the probability that the 
object is in the image. 

•  Note that P(L,θ) = P(L|θ)P(θ) 
•  Note its proportional, not equal 

–  We dropped P(θ), the a-priori for the object 
–  Similarly, we dropped P(I,θ) 

•  But these don’t determine which L is maximal 



More Bayesian Basis 

•  OK, that was only moderately helpful 
•  But if we assume that parts don’t overlap… 

 
•  Note that this is only a statement about 

image formation. Minus overlap, its 
reasonable 

p I | L,θ( )∝ p I | li,ui( )
i
∏



Location Modeling 
•  GHT models locations relative to a 

reference point 
– But if you model the human body, the hand 

position depends on the forearm, which 
depends on the upper arm, which depends on 
the torso… 

•  Felzenswalb models objects as a acyclic 
graph of related parts 
– Nodes are object parts 
– Edges are relative positional constraints 



Location II 

•  E are the edges in the graph 
– Undirected, must be acyclic 

•  C describes the relation between i and j 
–  In practice, a Gaussian centered at a mean 

distance, so that 

p L |θ( ) = p L | E,c( ) = p li, l j | ci, j( )
vi ,vj( )∈E
∏

li − l j = − log p li, l j | cij( )



Location in Practice 

p li, l j | cij( )∝N Tij li( )−Tji l j( ), 0,Dij( )
•  Where T & D are connection parameters 

encoded by C 
– T’s are translations expected between parts 
– D is a diagonal covariance matrix, giving 

expected distance variations 
•  N is a normal distribution 



More on Location  
•  The Graph θ=(E,c) is a restricted form of 

Bayesian Net 
– Edges capture conditional dependencies 
– Restricted to a tree 
– Accounts for articulation 
– Fails to account for global effects like pose under 

perspective projection 
•  “In practice” restricted to simple Gaussians 

– Assumes favored (default) position 
– Distances, not angles 
–  Is this a good model? 



Stepping Back 
•  We started with 
 

•  We reduced p(L|θ) to 

p L | I,θ( )∝ p I | L,θ( ) p L |θ( )

p L |θ( ) = p li, l j | ci, j( )
vi ,vj( )∈E
∏

p L |θ( )∝ N Tij li( )−Tji l j( ), 0,Dij( )
ij
∏



P(I|L,θ) 

•  This is the probability of generating the 
image, given object θ at position L 

•  We have already assumed that object 
parts don’t overlap or occlude each other 

•  Therefore 

P I | L,θ( )∝ P I | li,ui( )
i
∏



P(I|li,ui) 
•  Here, Felzenswalb get wishy-washy 

– Points out many methods could be used 
•  But what he uses is: 

– Object parts are modeled as points in iconic 
representation space (~10 dimensions) 

– Every object part has a diagonal coavariance 
matric in iconic representation space 

– The prob. of an observed point is inversely 
proportional to its distance in iconic space 



P(I|li,ui) – continued 
P I | li,ui( )∝N α li( ),µi,Σi( )

•  Where 
– α(li) is the “iconic index” at li. 
– µi is the mean “iconic index” for the part 
– Σi is the covariance of the “iconic index” 



Putting it all together 

p I | L,θ( )∝ N α li( ),µi,Σi( )
i
∏ N Tij li( )−Tji l j( ), 0,Dij( )

ij
∏

•  We have an equation!!! 
•  Two remaining problems: 

1.  Where does the model come from? 
2.  How to (efficiently) find arg max L? 



Training Felzenswalb 

•  Training samples have labeled points 

Nose 
Engine 

Wing Tip 

Tail Tip 



Training Felzenswalb (II) 

•  For every part 
– Collect all training samples of that part 
– Compute α for every sample 

•  Estimate µ, Σ for the part 

•  For every pair (i,j) of connected parts in θ 
– Collect samples of pairs 
– Estimate Tij (half the vector from I to j) 
– Estimate D, the covariance matrix of part 

distances 



Training Felzenswalb (III) 
•  There is even a heuristic for learning the 

connections between parts 
–  Compute the full covariance matrix D  
–  Take the largest off-diagonal term, connect those two 

parts 
•  These points depend most strongly on each other 

–  Repeatedly take the next largest off-diagonal term 
•  As long as it doesn’t introduce a cycle 
•  Until all parts are connected 

•  Note that some dependencies will be missed 
–  But in general, they will be the smaller ones 
–  The conditional independence created by the graph is 

only approximate, anyway 



Intuitions 
•  The pieces of the model are not sophisticated 

– Appearances modeled as points in iconic 
representation space 

– Variations in appearance as distances in iconic 
space 

– Relative positions as vectors + Gaussian noise 
•  Power comes from the combination of lots of 

unsophisticated models 
•  Simple models make training easy 



Solving For ArgMax L 

•  An inefficient solution is easy 
– Given n parts, and a WxH image 
– There are WxH choose n possible L’s. 
– Solve for each, take the max 

•  Solving for ArgMax L is NP-Hard if all parts 
are connected (i.e. T is full) 

p I | L,θ( )∝ N α li( ),µi,Σi( )
i
∏ N Tij li( )−Tji l j( ), 0,Dij( )

ij
∏



O(h2n) Solution 
•  A configuration L maps every part i to an image location (x,y) 

–  Let H be the grid of all points (x,y) 
–  May be courser than the original image resolution 

•  P(I|L,θ) is a product of terms of parts and limited part pairs 
–  Part pairs only for connected parts in the dependency graph 

•  The tree-shaped dependency graph has traversal orders such 
that: 
–  Any node, when visited, is connected to at most one other node 

that hasn’t already been visited 
–  Traversal begins at a leaf (obviously) 

•  Find ArgMax L by binding parts to locations in this order 
–  Similar to Viterbi   



O(h2n) Solution (continued) 
•  Create an hxn table L 

– The rows are positions (points in H) 
– The columns are parts, in the traversal order 

•  L[i,j] =ArgMax L1,…,j-1 P(I|L1,…,j-1,Lj=i, θ) 
•  Intuitively, L[i,j] is the P(I|L,θ) if part j is bound to 

location i, and parts 1…j-1 are bound optimally. 
•  L[i,j] = Maxk L[k,j-1] N(α(li),µj,Σj) N(Tkj-Tjk,0,Dk) 
•  This can be computed in O(h2n) time 



Efficient Solution (surfed) 
•  O(h2n) is still too slow (h is large) 
•  O(hn) algorithm based on not trying all 

positions for all points 
– Given a set K points on a grid, it is possible to 

compute the distance to the nearest point in K for 
all grid points in O(k) time [Borgefors 1986] 

– This can be modified for probabilities (not 
distances) 

– This allows L[i,j] to be estimated without 
considering all previous bindings K 

•  Computing only a fixed number reduced the complexity 
to O(hn) 


