Stereo

CS 510
May 8th, 2013

Where are we?

- We are done! (essentially)
- We covered image matching
- Correlation \& Correlation Filters
- Fourier Analysis
- PCA
- We covered feature-based matching
- Bag of Features approach
- Constellation approach
- Including:
- Feature Extraction
- Feature Description
- Classification
- Not a bad introduction to vision

But we skipped a few topics...

- Like 3D vision
- 3D sensors (e.g. Kinect)
- Stereo (i.e. multiple overlapping cameras)
- Structure from Motion
- Like Video
- Object tracking
- Motion segmentation
- Activity recognition

Let's fix one omission: Stereo

- The ability to infer 3D structure and distance from two or more overlapping images taken simultaneously from different viewpoints

Are these stereo images? Describe the viewpoints

Scenarios

- Most common: perpendicular optical axes

- Also common: converging optical axes (e.g. eyes)

- More common than you might think: arbitrary axes

Two SubProblems:

- Image Matching (correspondence)
- identifying which points in image \#1 match which points in image \#2
- note: not all points in image \#1 match anything in image \#2. Why not?
- Note: not all matching points can be found.
- Reconstruction
- Given point matches, determine their 3D position
- Requires triangulation (implicit or explicit)

Image Matching

- Find common scene points in two images
- Occlusion
- Incomplete overlap of visual fields
- Potentially strong perspective effects
- General Methods:
- Correlation based
- Cross-correlate every pixel in left image to right image
- Epipolar geometry can constrain this search...
- Feature based
- Extract points, edges, lines, etc., and match them across image

Reconstruction as Triangulation

- Assume that the positions and baselines of the cameras are known:

$$
\begin{aligned}
& P=t_{l}\left[x_{l}, y_{l}, f_{l}\right] \\
& P=\left[b_{x}, b_{y}, b_{z}\right]+t_{r}\left[x_{r}, y_{r}, f_{r}\right]
\end{aligned}
$$

Solve for t ' s , compute coordinate of point.
Q: Isn't this overconstrained?

Epipolar Geometry

- For any point in image \#1, there is a line of points in image \#2 such that its match (if one exists) must lie on that line.

- There is a plane defined by the two focal points and the 2 D point in image \#1. The 3D point must lie in this plane.
- Also, the matching point in image \#2 must lie in this plane.

Epipolar (cont.)

- Since the intersection of two planes is a line, there is a line in image \#2 on which the matching point must lie. This is called the epipolar line.
- If you know the vrp and prp of both cameras, you can compute the epipolar line for any point in image \#1.
- If axes are parallel and $\mathrm{B}_{\mathrm{z}}=0$, then the epipolar lines are scan lines.
- The Essential Matrix (E) allows you to compute epipolar geometry without knowing the camera parameters a priori

Getting Formal about Stereo

Do not panic about the next N slides; my goal is just to expose you to terms \& concepts in case you go to a vision conference...

Basic Equations

$P_{r}=R\left(P_{l}-T\right) \quad$ 1:Relation between 3D views of point P
$T \times P_{l}$
2:Normal to epipolar plane
$\left(P_{l}-T\right)^{T} \cdot\left(T \times P_{l}\right)=0 \quad$ 3:Planarity constraint
$\left(R^{T} P_{r}\right)^{T} \cdot\left(T \times P_{l}\right)=0 \quad$ 4:Rewrite of \#3, using \#1

A Clever Equation

You can rewrite a cross product as dot product, so

$$
\begin{gathered}
T \times P_{l}=S P_{l} \\
\text { where } \\
S=\left[\begin{array}{ccc}
0 & -T_{z} & T_{y} \\
T_{z} & 0 & -T_{x} \\
-T_{y} & T_{x} & 0
\end{array}\right]
\end{gathered}
$$

More Equations

$$
\begin{aligned}
\left(R^{T} P_{r}\right)^{T} S P_{l}=0 & \text { 5: Substitute dot for cross in \#4 } \\
P_{R}^{T} R S P_{l}=0 & \text { 6: Apply transpose equivalency } \\
P_{R}^{T} E P_{l}=0 & \text { 7: Let RS = E }
\end{aligned}
$$

E is called the Essential Matrix. It is rank 2 (because of S), and shows a linear relationship between the projections of points in two images

Or in 2D....

$$
\begin{aligned}
p_{l}=\frac{f_{l}}{Z_{l}} P_{l} & \text { 8: Definition of perspective } \\
P_{l}=\frac{Z_{l}}{f_{l}} p_{l} & \text { 9: same } \\
\left(\frac{Z_{r}}{f_{r}} p_{r}\right)_{R}^{T} E\left(\frac{Z_{l}}{f_{l}} p_{l}\right)=0 & \text { 10: rewrite of \#7, with \#8 } \\
p_{R}^{T} E p_{l}=0 & \text { 11: drop non-zero constants }
\end{aligned}
$$

Back to Epipolar...

- So E is a linear relation between p_{1} and p_{r}
- $u_{r}=E p_{1}$, where u_{r} is the line of points in R that might match point p_{1}
- If you know E
- For every image point p_{1} :
- calculate the line u_{r}
- only cross-correlate along that line
- E can be calculated from 8 image correspondences
- Why 8 ? (How many DOF? How many constraints per correspondence?)

Stereo Practicum

- The larger the baseline, the more the perspective distortion
- The harder it is to match points
- The smaller the baseline, the smaller the angle between P_{1} and P_{r}, the higher the reconstruction error.
- Errors always highest in Z...

