A Rebirth, one of several
Multi-layer Perceptrons II

• Classic perceptrons threshold linear functions
 – $f(x) = h(w \cdot x + b)$
 – $h()$ is a threshold-based activation function
 – Converts activations into decisions

• But if we want to combine perceptrons?
 – Thresholding individual perceptrons is not useful
 – Replacing $h()$ with identity would allow us to sum linear responses
 – But a sum of linear responses is just another linear response
Sigmoid Activation Functions

• $f(x) = s(w \cdot x + b)$

$y = \tanh(x)$

$y = \left(1 + e^{-x}\right)^{-1}$
Activation Function Properties

• Activation functions **must**
 – Be non-linear

• Activation functions **may**
 – map an infinite domain to a finite range
 • Like [-1, 1] (for tanh) or [0, 1] (for logistic)
 • Keeps values from growing too large/small
 • Sometimes called “squashing”
 – Have non-zero derivatives everywhere
 • Useful for training
Backpropagation

- Backpropagation is the algorithm that describes how we update weights in a network, given:
 - Training samples
 - Training labels
 - A cost function
- It's used for (almost) all networks
- Network nodes may be:
 - Non-linear perceptrons (the most common)
 - Convolutional units
 - Pooling units
 - Batch normalization units
 - …
Goals For Today

• Walk you through the math of backpropagation
 – Complicated, but just calculus
 – Almost universal: modifiable for different node types (see previous slide)
• Today’s derivation assumes multi-layer perceptrons
 ➢ $z(x) = wx + b$
 ➢ $a(x) = h(z(x)) = h(wx + b)$
• Remember the chain rule from calculus:
 ➢ $f(x) = g(h(x)) \rightarrow f'(x) = g'(h(x))h'(x)$
Simple Neural Network

Layer 1

N^1_1
N^1_2
N^1_3
N^1_4

Layer 2

N^2_1
N^2_2

Layer 3

N^3_1
N^3_2

Notation: superscripts are layers, subscripts are node numbers
Setup for Training: Cost

Layer 1 Layer 2 Layer 3 Cost

\(N^1_1 \) \(N^2_1 \) \(N^3_1 \) \(Y_1 \)
\(N^1_2 \) \(N^2_2 \) \(N^3_2 \) \(Y_2 \)
\(N^1_3 \)
\(N^1_4 \)

(training labels)
Cost Functions

- Cost functions measure the gap between the network output and the ideal output.
- Two necessary properties:
 1. An average over samples: \(C = \frac{1}{n} \sum_x C_x \)
 2. Function of output activations: \(C = C(\alpha_l) \)
- Example: mean squared error
 \[
 C = \frac{1}{2n} \sum_x \| y(x) - a^L(x) \|^2
 \]
δS : local derivatives as error measures

Layer 1 Layer 2 Layer 3 Cost

\[\Delta C = \frac{\partial C}{\partial z_j^l} \Delta z_j^l \]

Subtle change from previous diagram, now showing cost C not training label.
Partial derivatives as error measures

• Imagine you want to change the output z^l_j, by Δz^l_j

• Then $\Delta C = \frac{\partial C}{\partial z^l_j} \Delta z^l_j$

• If $\left|\frac{\partial C}{\partial z^l_j}\right|$ is large, then C becomes smaller by giving Δz^l_j the opposite sign

• But if $\left|\frac{\partial C}{\partial z^l_j}\right|$ is near zero, then Δz^l_j doesn’t matter.
 - $\frac{\partial C}{\partial z^l_j}$ is already optimal!
 - $\delta^l_j \equiv \frac{\partial C}{\partial z^l_j}$
Recap - where are we?

• We can optimize on a per-sample basis
 – Because the cost function is an average
• Minimizing the δs optimizes the net
 – The δs depend on the data samples
• But how do we minimize the δs?

• We will assume that nodes have non-linear functions, so $a_j^l = h(z_j^l)$
Output Layer

- \(\delta_j^L = \frac{\partial C}{\partial a_j^L} h'(z_j^L) \) by the chain rule

- \(\frac{\partial C}{\partial a_j^L} \) is the partial derivative of C with respect to the activation of output unit j
 - If C is LMS (slide #6)
 - \(\frac{\partial C}{\partial a_j^L} = a_j^L(x) - y(x) \)
 - The difference between the output & desired output
Output Layer (cont.)

- \(h'(z_j^L) \) is the derivative of the non-linear transfer function at \(z_j^L \)
- If \(h(x) = \tanh(x) \), \(\sigma'(x) = 1 - \tanh^2(x) \)
- If \(h(x) = (1 + e^{-x})^{-1} \),
 \[
 \sigma'(x) = \sigma(x)(1 - \sigma(x))
 \]
- \(\delta_j^L = \left(a_j^L(x) - y(x) \right) \left(1 - \tanh^2 \left(z_j^L(x) \right) \right) \text{ or } \]
 \(\delta_j^L = \left(a_j^L(x) - y(x) \right) \left(a_j^L(x) \left(1 - a_j^L(x) \right) \right) \)

3/29/20

CS 510, Image Computation, ©Ross Beveridge
\(\delta^L \text{ given } \delta^{L+1} \)

- \(\delta^l_j = \sigma'(z_j^l) \sum_k w_{kj}^{l+1} \delta_k^{l+1} \)
- \(\sigma' \) is computed as on previous slide
- The RHS is just the sum of the impacts
- This is where \textit{backpropagation} comes from
 - Calculate \(\delta \)s for output layer
 - Then recursively compute \(\delta \)s for previous layers
Computing δ_s...

Layer 1

Layer 2

Layer 3

Cost

Layer 1

Layer 2

Layer 3

Cost

Compute intermediate δ_s

Compute output layer δ_s
So...

• Given an input x and output y:
 – We can compute δ^l_j for every node j at every level l
 – Minimizing the δs will optimize the network
 • Relative to this sample
 – So we need to adjust the weights w_i and b to reduce the δs
 • But just a little for each input/output pair
 • So we can optimize across all samples
Adjusting b

• Remember that $\delta_j^l \equiv \frac{\partial c}{\partial z_j^l}$ (slide #8)

• And that $z_j^l = w_j^l x + b$

• So $\frac{\partial c}{\partial b_j^l} = \delta_j^l$

• So $b_j^l \leftarrow (1 - \alpha) b_j^l - \alpha \delta_j^l$
 – Where α is a learning rate
 – Regulates how much you react to each sample
Adjusting w’s

\[\frac{\partial c}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \]

• So \(w_{jk}^l \leftarrow (1 - \alpha)w_{jk}^l - \alpha a_k^{l-1} \delta_j^l \)

 – Where \(\alpha \) is the same learning rate as before

 – We are collectively minimizing the deltas by heading downhill in the k+1 dimensional space defined by w & b
Backpropagation (redux)

• Backpropagation updates weights in a network, given
 – Training samples
 – Training labels
 – A cost function

• Network nodes may be
 – Non-linear perceptrons (the most common)
 – Convolutional units
 – Pooling units
 – Batch normalization units
 – …
Step Back! Other Resources

• Modulo some notation ambiguity the previous formula-based presentation if fine, but for some of us unsatisfying

• It is best to approach the task of understanding backpropogation simultaneously from three angles.
 1. Mathematical formulas (just finished)
 2. Develop an internal visualization
 3. Running code
May I Recommend

What is backpropagation really doing? | Deep learning, chapter 3

1,698,016 views • Nov 3, 2017
Back propagation with TensorFlow

(Updated for TensorFlow 1.0, at March 6th, 2017)

When I first read about neural network in Michael Nielsen’s Neural Networks and Deep Learning, I was excited to find a good source that explains the material along with actual code. However there was a rather steep jump in the part that describes the basic math and the part that goes about implementing it, and it was especially apparent in the numpy-based code that implements backward propagation.

So, in order to explain it better to myself, and learn about TensorFlow in the process, I took it upon myself to implement the first network in the book using TensorFlow by two means. First, manually defining the back propagation step, and the second - letting TensorFlow do the hard work using automatic differentiation.
As we will discuss in lecture today, I expect everyone to setup a TF 1.14 environment and play with this code.