Backpropagation

CS 510
Lecture \#12
March 30th, 2020

A Rebirth, one of several

WikipediA

The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal Recent changes Contact page

2 Not logged in Talk Contributions Create account Log in

Article Talk Read More \checkmark Search Wikipedia Q

Ronald J. Williams

From Wikipedia, the free encyclopedia
Ronald J. Williams is professor of computer science at Northeastern University, and one of the pioneers of neural networks. He co-authored a paper on the backpropagation algorithm which triggered a boom in neural network research. ${ }^{[1]} \mathrm{He}$ also made fundamental contributions to the fields of recurrent neural networks ${ }^{[2][3]}$ and reinforcement learning. ${ }^{[4]}$

References [edit]

1. ^ David E. Rumelhart, Geoffrey E. Hinton und Ronald J. Williams. Learning representations by back-propagating errors., Nature (London) 323, S. 533-536

Multi-layer Perceptrons II

- Classic perceptrons threshold linear functions
$-f(x)=h(w \cdot x+b)$
- h() is a threshold-based activation function
- Converts activations into decisions
- But if we want to combine perceptrons?
- Thresholding individual perceptrons is not useful
- Replacing $\mathrm{h}($ () with identity would allow us to sum linear responses
- But a sum of linear responses is just another linear response

Sigmoid Activation Functions

- $f(x)=s(w \cdot x+b)$

$y=\tanh (x)$

Activation Function Properties

- Activation functions must
- Be non-linear
- Activation functions may
- map an infinite domain to a finite range
- Like [-1, 1] (for tanh) or [0, 1] (for logistic)
- Keeps values from growing too large/small
- Sometimes called "squashing"
- Have non-zero derivatives everywhere
- Useful for training

Backpropagation

- Backpropagation is the algorithm that describes how we update weights in a network, given
- Training samples
- Training labels
- A cost function
- Its used for (almost) all networks
- Network nodes may be
- Non-linear perceptrons (the most common)
- Convolutional units
- Pooling units
- Batch normalization units

Goals For Today

- Walk you through the math of backpropagation
- Complicated, but just calculus
- Almost universal : modifiable for different node types (see previous slide)
- Today’s derivation assumes multi-layer perceptrons
$>z(x)=w x+b$
> $a(x)=h(z(x))=h(w x+b)$
- Remember the chain rule from calculus:
, $f(x)=g(h(x)) \rightarrow f^{\prime}(x)=g^{\prime}(h(x)) h^{\prime}(x)$

Simple Neural Network

Layer 1 Layer 2 Layer 3

Setup for Training: Cost

Layer 1 Layer 2 Layer 3 Cost

Cost Functions

- Cost functions measure the gap between the network output and the ideal output
- Two necessary properties

Allows us to optimize per sample

1. An average over samples: $C=\frac{1}{n} \sum_{x} C_{x}$
2. Function of output activations: $C=C\left(a_{l}\right)$

- Example: mean squared error

$$
C=\frac{1}{2 n} \sum_{x}\left\|y(x)-a^{L}(x)\right\|^{2}
$$

Allows us to initialize the partial derivative computations

δs : local derivatives as error measures

Layer 1
 Layer 2
 Layer 3
 Cost

Partial derivatives as error measures

- Imagine you want to change the output $\mathrm{z}_{\mathrm{j},}$, by $\Delta \mathrm{z}_{\mathrm{j}}{ }^{\mathrm{j}}$
- Then $\Delta C=\frac{\partial C}{\partial z_{j}^{l}} \Delta z_{j}^{l}$
- If $\left|\frac{\partial C}{\partial z_{j}^{l}}\right|$ is large, then C becomes smaller by giving Δz_{j}^{l} the opposite sign
- But if $\left|\frac{\partial c}{\partial z_{j}^{l}}\right|$ is near zero, then Δz_{j}^{l} doesn't matter.
- $\frac{\partial C}{\partial z_{j}^{l}}$ is already optimal!
$-\delta_{j}^{l} \equiv \frac{\partial C}{\partial z_{j}^{l}}$

Recap - where are we?

- We can optimize on a per-sample basis
- Because the cost function is an average
- Minimizing the δ s optimizes the net
- The δ s depend on the data samples
- But how do we minimize the δs ?
- We will assume that nodes have nonlinear functions, so $a_{j}^{l}=h\left(z_{j}^{l}\right)$

Output Layer

- $\delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} h^{\prime}\left(z_{j}^{L}\right)$ by the chain rule
- $\frac{\partial C}{\partial a_{j}^{L}}$ is the partial derivative of C with respect the activation of output unit j
- If C is LMS (slide \#6)
- $\frac{\partial C}{\partial a_{j}^{L}}=a_{j}^{L}(x)-y(x)$
- The difference between the output $\&$ desired output

Output Layer (cont.)

- $h^{\prime}\left(z_{j}^{L}\right)$ is the derivative of the non-linear transfer function at z_{j}^{L}
- If $h(x)=\tanh (x), \sigma^{\prime}(x)=1-\tanh ^{2}(x)$
- If $h(x)=\left(1+e^{-x}\right)^{-1}$,

$$
\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))
$$

- $\delta_{j}^{L}=\left(a_{j}^{L}(x)-y(x)\right)\left(1-\tanh ^{2}\left(z_{j}^{L}(x)\right)\right) \underline{\text { or }}$
- $\delta_{j}^{L}=\left(a_{j}^{L}(x)-y(x)\right)\left(a_{j}^{L}(x)\left(1-a_{j}^{L}(x)\right)\right)$

$\delta^{\text {L }}$ given $\delta^{\text {L+1 }}$

- $\delta_{j}^{l}=\sigma^{\prime}\left(z_{j}^{l}\right) \sum_{k} w_{k j}^{l+1} \delta_{k}^{l+1}$
- σ ' is computed as on previous slide
- The RHS is just the sum of the impacts
- This is where backpropagation comes from
- Calculate δ s for output layer
- Then recursively compute δ s for previous layers

Computing $\delta s . .$.

- Given an input x and output y :
- We can compute $\delta_{j}{ }^{1}$ for every node j at every level I
- Minimizing the δs will optimize the network
- Relative to this sample
- So we need to adjust the weights w_{i} and b to reduce the δs
- But just a little for each input/output pair
- So we can optimize across all samples

Adjusting b

- Remember that $\delta_{j}^{l} \equiv \frac{\partial C}{\partial z_{j}^{l}}$ (slide \#8)
- And that $z_{j}^{l}=w_{j}^{l} x+b$
- So $\frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l}$
- So $b_{j}^{l} \leftarrow(1-\alpha) b_{j}^{l}-\alpha \delta_{j}^{l}$
- Where α is a learning rate
- Regulates how much you react to each sample

Adjusting w's

- $\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l}$
- So $w_{j k}^{l} \leftarrow(1-\alpha) w_{j k}^{l}-\alpha a_{k}^{l-1} \delta_{j}^{l}$
- Where α is the same learning rate as before
- We are collectively minimizing the deltas by heading downhill in the $\mathrm{k}+1$ dimensional space defined by w \& b

Backpropagation (redux)

- Backpropagation updates weights in a network, given
- Training samples
- Training labels
- A cost function
- Network nodes may be
- Non-linear perceptrons (the most common)
- Convolutional units
- Pooling units
- Batch normalization units
- ...

Step Back! Other Resources

- Modulo some notation ambiguity the previous formula-based presentation if fine, but for some of us unsatisfying
- It is best to approach the task of understanding backpropogation simultaneously from three angles.

1. Mathematical formulas (just finished)
2. Develop an internal visualization
3. Running code

May I Recommend

- - \ll > 四	\ldots	Q wwwyoutube.com/watchrv=l\|g3gGewa5u	4) C				\square
- Yoưube	Search		Q			$!$	R

3BLUE1BROWN SERIES S3•E3
What is backpropagation really doing? | Deep learning, chapter 3
1,698,016 views • Nov 3, 2017

And Also

$\bigcirc \bigcirc<$ 目

G

Dan Aloni's blog about search

Back propagation with TensorFlow

(Updated for TensorFlow 1.0, at March 6th, 2017)
When I first read about neural network in Michael Nielsen's Neural Networks and Deep Learning, I was excited to find a good source that explains the material along with actual code. However there was a rather steep jump in the part that describes the basic math and the part that goes about implementing it, and it was especially apparant in the numpy -based code that implements backward propagation.

So, in order to explain it better to myself, and learn about TensorFlow in the process, I took it upon myself to implement the first network in the book using TensorFlow by two means. First, manually defining the back propagation step, and the second - letting TensorFlow do the hard work using automatic differentiation.

Please Run and Play With

As the semester develops links to additional course resources will be placed here.

Early OpenCV Tutorials

- Seven OpenCV tutorials used in lectures 2 and 3.
- Examples of the Fourier Transform, Template Matching and Canny Edge Detection.

Tensorflow

The web contains many helpful tutorials on tensorflow. I have only begun to scratch the surface. That caveat offered, I found these helpful.

- Grant Sanderson's 2bleciterown website and associated YouTube channel has a very nice walkthrough and visuatemplanation of beekpropogation. This is a must watch supplement to the usual formula based approach to explaining backpropogation.
- Dan Aloni's blog post on Back Propagation with TensorFlow. The bad news is this tutorial is firmly rooted in TensorFlow 1 rather then 2. The good news, it is a rare explicit implementation of backpropogation! Thereore, it reveals what more modern APIs obscure. We will use this tutorial as one of the three basic paths to understanding backpropogation. Here is our local and somewhat updated code aloni.zip

> As we will discuss in lecture today, I expect everyone to setup a TF 1.14 environment and play with this code.

