
Backpropagation

CS 510 
Lecture #12

March 30th, 2020



A Rebirth, 
one of several

3/30/20 CS 510, Image Computation, ©Ross Beveridge 2



Multi-layer Perceptrons II
• Classic perceptrons threshold linear functions

– 𝑓 𝑥 = ℎ 𝑤 & 𝑥 + 𝑏
– h() is a threshold-based activation function
– Converts activations into decisions

• But if we want to combine perceptrons?
– Thresholding individual perceptrons is not useful
– Replacing h() with identity would allow us to sum 

linear responses
– But a sum of linear responses is just another 

linear response

3/30/20 CS 510, Image Computation, ©Ross Beveridge 3



Sigmoid Activation Functions

• 𝑓 𝑥 = 𝑠 𝑤 & 𝑥 + 𝑏

3/30/20 CS 510, Image Computation, ©Ross Beveridge 4

𝑦 = 𝑡𝑎𝑛ℎ 𝑥 𝑦 = 1 + 𝑒!" !#



Activation Function Properties
• Activation functions must

– Be non-linear
• Activation functions may

– map an infinite domain to a finite range
• Like [-1, 1] (for tanh) or [0, 1] (for logistic)
• Keeps values from growing too large/small
• Sometimes called “squashing”

– Have non-zero derivatives everywhere
• Useful for training

3/30/20 CS 510, Image Computation, ©Ross Beveridge 5



Backpropagation
• Backpropagation is the algorithm that describes 

how we update weights in a network, given
– Training samples
– Training labels
– A cost function

• Its used for (almost) all networks
• Network nodes may be

– Non-linear perceptrons (the most common)
– Convolutional units
– Pooling units
– Batch normalization units
– …

3/29/20 CS 510, Image Computation, ©Ross Beveridge 6



Goals For Today
• Walk you through the math of 

backpropagation
– Complicated, but just calculus
– Almost universal : modifiable for different node 

types (see previous slide)
• Today’s derivation assumes multi-layer 

perceptrons
Ø 𝑧 𝑥 = 𝑤𝑥 + 𝑏
Ø 𝑎 𝑥 = ℎ 𝑧 𝑥 = ℎ 𝑤𝑥 + 𝑏

• Remember the chain rule from calculus:
Ø 𝑓 𝑥 = 𝑔 ℎ 𝑥 → 𝑓! 𝑥 = 𝑔! ℎ 𝑥 ℎ! 𝑥

3/29/20 CS 510, Image Computa@on, ©Ross Beveridge 7



Simple Neural Network

3/29/20 CS 510, Image Computation, ©Ross Beveridge 8

N1
1

N1
2

N1
3

N1
4

N2
1

N2
2

N3
1

N3
2

Layer 1 Layer 2 Layer 3

Notation: superscripts are layers, 
subscripts are node numbers



Setup for Training: Cost

3/29/20 CS 510, Image Computation, ©Ross Beveridge 9

N1
1

N1
2

N1
3

N1
4

N2
1

N2
2

N3
1

N3
2

Layer 1 Layer 2 Layer 3 Cost
(training labels)

Y1

Y2



Cost Functions
• Cost functions measure the gap between 

the network output and the ideal output
• Two necessary properties

1. An average over samples: 𝐶 = !
"
∑# 𝐶#

2. Function of output activations: 𝐶 = 𝐶 𝑎$
• Example: mean squared error

𝐶 =
1
2𝑛
(
#

𝑦 𝑥 − 𝑎% 𝑥 &

3/29/20 CS 510, Image Computation, ©Ross Beveridge 10

Allows us to optimize 
per sample

Allows us to 
initialize the 
partial derivative 
computations



ds : local derivatives as error measures

3/29/20 CS 510, Image Computation, ©Ross Beveridge 11

N1
1

N1
2

N1
3

N1
4

N2
1

N2
2

N3
1

N3
2

Layer 1 Layer 2 Layer 3 Cost

C1

C2

𝑤#$%

∆𝐶 =
𝜕𝐶
𝜕𝑧&'

∆𝑧&'
Subtle change from previous 
diagram, now showing cost C 

not training label. 



Partial derivatives as error measures
• Imagine you want to change the output zl

j, by Δzl
j

• Then Δ𝐶 = ()
(*!

" ∆𝑧&'

• If ()
(*!

" is large, then C becomes smaller by giving ∆𝑧&'

the opposite sign

• But if ()
(*!

" is near zero, then ∆𝑧&' doesn’t matter.

– !"
!#!

" is already optimal!

– 𝛿$% ≡
!"
!#!

"

3/29/20 CS 510, Image Computation, ©Ross Beveridge 12



Recap - where are we?
• We can optimize on a per-sample basis

– Because the cost function is an average
• Minimizing the δs optimizes the net

– The δs depend on the data samples
• But how do we minimize the δs?

• We will assume that nodes have non-
linear functions, so 𝑎!" = ℎ 𝑧!"

3/29/20 CS 510, Image Computa@on, ©Ross Beveridge 13



Output Layer

• 𝛿!# =
$%
$&"

# ℎ' 𝑧!# by the chain rule

• $%
$&"

# is the partial derivative of C with respect 

the activation of output unit j
– If C is LMS (slide #6)

• ()
(+!

" = 𝑎&, 𝑥 − 𝑦 𝑥

• The difference between the output & desired output

3/29/20 CS 510, Image Computation, ©Ross Beveridge 14



Output Layer (cont.)
• ℎ# 𝑧$% is the derivative of the non-linear 

transfer function at 𝑧$%
• If ℎ 𝑥 = 𝑡𝑎𝑛ℎ 𝑥 , 𝜎# 𝑥 = 1 − 𝑡𝑎𝑛ℎ& 𝑥
• If ℎ 𝑥 = 1 + 𝑒'( '), 

𝜎# 𝑥 = 𝜎 𝑥 1 − 𝜎 𝑥

• 𝛿$% = 𝑎$% 𝑥 − 𝑦 𝑥 1 − 𝑡𝑎𝑛ℎ& 𝑧$% 𝑥 or

• 𝛿$% = 𝑎$% 𝑥 − 𝑦 𝑥 𝑎$% 𝑥 1 − 𝑎$% 𝑥

3/29/20 CS 510, Image Computation, ©Ross Beveridge 15



δL given δL+1

• 𝛿!" = 𝜎' 𝑧!" ∑(𝑤(!")*𝛿(")*

• σ’ is computed as on previous slide
• The RHS is just the sum of the impacts
• This is where backpropagation comes 

from 
– Calculate δs for output layer
– Then recursively compute δs for previous 

layers

3/29/20 CS 510, Image Computation, ©Ross Beveridge 16



Computing δs…

3/29/20 CS 510, Image Computation, ©Ross Beveridge 17

N1
1

N1
2

N1
3

N1
4

N2
1

N2
2

N3
1

N3
2

Layer 1 Layer 2 Layer 3 Cost

Y1

Y2

Compute 
output layer 
δs

Compute 
intermediate 
δs



So…
• Given an input x and output y:

– We can compute δlj for every node j at every 
level l

– Minimizing the δs will optimize the network
• Relative to this sample

– So we need to adjust the weights wi and b to 
reduce the δs

• But just a little for each input/output pair
• So we can optimize across all samples

3/29/20 CS 510, Image Computa@on, ©Ross Beveridge 18



Adjusting b
• Remember that 𝛿!" ≡

$%
$+"

$ (slide #8)

• And that 𝑧!" = 𝑤!"𝑥 + 𝑏

• So $%
$,"

$ = 𝛿!"

• So 𝑏!" ← 1 − 𝛼 𝑏!" − 𝛼𝛿!"

– Where α is a learning rate
– Regulates how much you react to each 

sample

3/29/20 CS 510, Image Computation, ©Ross Beveridge 19



Adjusting w’s

• $%
$-"%

$ = 𝑎(".*𝛿!"

• So 𝑤!(" ← 1 − 𝛼 𝑤!(" − 𝛼𝑎(".*𝛿!"

– Where α is the same learning rate as before
– We are collectively minimizing the deltas by 

heading downhill in the k+1 dimensional 
space defined by w & b

3/29/20 CS 510, Image Computation, ©Ross Beveridge 20



Backpropagation (redux)
• Backpropagation updates weights in a 

network, given
– Training samples
– Training labels
– A cost function

• Network nodes may be
– Non-linear perceptrons (the most common)
– Convolutional units
– Pooling units
– Batch normalization units
– …

3/29/20 CS 510, Image Computation, ©Ross Beveridge 21



Step Back! Other Resources
• Modulo some notation ambiguity the 

previous formula-based presentation if 
fine, but for some of us unsatisfying

• It is best to approach the task of
understanding backpropogation
simultaneously from three angles.
1. Mathematical formulas (just finished)
2. Develop an internal visualization
3. Running code 

3/30/20 CS 510, Image Computation, ©Ross Beveridge 22



May I Recommend

3/30/20 CS 510, Image Computa@on, ©Ross Beveridge 23



And Also

3/30/20 CS 510, Image Computation, ©Ross Beveridge 24



Please Run and Play With …

3/30/20 CS 510, Image Computa@on, ©Ross Beveridge 25

As we will discuss in lecture today, I expect everyone to 
setup a TF 1.14 environment and play with this code. 


