Backpropagation

CS 510
Lecture #12
March 30", 2020

A Rebirth,
one of several

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Help

About Wikipedia
Community portal
Recent changes
Contact page

3/30/20

& Not logged in Talk Contributions Create account Login

Article Talk Read More v |Search Wikipedia Q

Ronald J. Williams

From Wikipedia, the free encyclopedia

Ronald J. Williams is professor of computer science at
Northeastern University, and one of the pioneers of
neural networks. He co-authored a paper on the
backpropagation algorithm which triggered a boom in
neural network research.!'! He also made fundamental
contributions to the fields of recurrent neural
networks!?®] and reinforcement learning. %!

References [edit]

1. A David E. Rumelhart, Geoffrey E. Hinton und
Ronald J. Williams. Learning representations by
back-propagating errors., Nature (London) 323, S.
533-536

CS 510, Image Computation, ©Ross Beveridge

Multi-layer Perceptrons |

» Classic perceptrons threshold linear functions
—f(x)=h(w-x+Db)
— h() is a threshold-based activation function
— Converts activations into decisions
« But if we want to combine perceptrons?
— Thresholding individual perceptrons is not useful

— Replacing h() with identity would allow us to sum
linear responses

— But a sum of linear responses is just another
linear response

3/30/20 CS 510, Image Computation, ©Ross Beveridge

Sigmoid Activation Functions

¢ f(x) =s(w-x +b)

tanhy

Activation Function Properties

* Activation functions must
— Be non-linear

 Activation functions may
— map an infinite domain to a finite range
* Like [-1, 1] (for tanh) or [0, 1] (for logistic)
« Keeps values from growing too large/small
« Sometimes called “squashing”

— Have non-zero derivatives everywhere
 Useful for training

3/30/20 CS 510, Image Computation, ©Ross Beveridge

Backpropagation

« Backpropagation is the algorithm that describes
how we update weights in a network, given

— Training samples
— Training labels
— A cost function

* |ts used for (almost) all networks

* Network nodes may be
— Non-linear perceptrons (the most common)
— Convolutional units
— Pooling units
— Batch normalization units

3/29/20 CS 510, Image Computation, ©Ross Beveridge

Goals For Today

* Walk you through the math of
backpropagation
— Complicated, but just calculus

— Almost universal : modifiable for different node
types (see previous slide)

* Today’s derivation assumes multi-layer
perceptrons

> z(x) =wx+b
> alx) = h(z(x)) = h(wx + b)

« Remember the chain rule from calculus:
> fO) =g(h(x)) = f'(x) = g'(h(x))h' (x)

Simple Neural Network

Layer 1 Layer 2 Layer 3
N*, Ny N3
SN2
X =
N13 I\IZZ I\|32

@ Notation: superscripts are layers,
subscripts are node numbers

3/29/20 CS 510, Image Computation, ©Ross Beveridge

Setup for Training: Cost

Layer 3

Cost
(training labels)

(N2

1

Layer 1 Layer 2
N, 21
X >
Ni; N2,

3/29/20

N3,

)
()
)

Cost Functions

» Cost functions measure the gap between
the network output and the ideal output

» Two necessary properties /0% ! fooptimize

per sample

1
1. An average over samples: C = ;Zx C,—

2. Function of output activations: C = C(a;)
« Example: mean squared error 1

1 Allows us to
C — _z”y(x) — al(x)||? initialize the
2n - partial derivative
computations

3/29/20 CS 510, Image Computation, ©Ross Beveridge 10

OS : local derivatives as error measures

Layer 1

Layer 2

N,

Ni;

3/29/20

ac
AC = _l Z]
6zj

CS 510, Image Computation, ©Ross Beveridge

)
o
N

Layer 3 Cost

A\

Subtle change from previous
diagram, now showing cost C
not training label.

11

Partial derivatives as error measures

« Imagine you want to change the output z'j, by Az'j
 Then AC = %Az}

Zj
. If |25 72! Is large, then C becomes smaller by giving Az

the opp05|te sign
 Butif |—

IS near zero, then Az doesn’t matter.

Zj

— g— is already optimal!

J l
az]

3/29/20 CS 510, Image Computation, ©Ross Beveridge 12

Recap - where are we?

* \We can optimize on a per-sample basis
— Because the cost function is an average

* Minimizing the 6s optimizes the net
— The &s depend on the data samples

« But how do we minimize the 6s?

« We will assume that nodes have non-
linear functions, so a; = h(z;)

Qutput Layer

+ 57 = %h’(zf) by the chain rule

Is the partial derivative of C with respect

aaL
the activation of output unit |
— If C is LMS (slide #6)

AL AORSIC)

* The difference between the output & desired output

Qutput Layer (cont.)

» h'(z7) is the derivative of the non-linear
transfer function at z

e If h(x) = tanh(x), o (x) = 1 — tanh?(x)
e IfR(x) = (1 4+ e%)"
o' (x) = a(x)(l — a(x))

+ & = (ajL(x) — y(x)) (1 — tanh? (Z]-L(X))) or
. 6]-L = (ajL(x) — y(x)) (ajL(x) (1 — ajL(x)))

3/29/20 . (CS510 , Image Computat ion, ©Ross Beveridge

8- given &-*1

o SU _— (1 [+1 cl+1
6 =0 (Zj)zkwkj Or,
* 0 Is computed as on previous slide

 The RHS is just the sum of the impacts

* This is where backpropagation comes
from
— Calculate 6s for output layer

— Then recursively compute 6s for previous
layers

Computing és...

Layer 1 a Layer 2 A

~

Layer 3

intermediate

£

Compute
output layer

\0s Y,

Qs

J

3/29/20 CS 510, Image Computation, ©Ross Beveridge

So...

» Given an input x and output y:

— We can compute 0/ for every node j at every
level |
— Minimizing the 0s will optimize the network
 Relative to this sample
— S0 we need to adjust the weights w; and b to
reduce the 0s
 But just a little for each input/output pair
« SO0 we can optimize across all samples

Adjusting b
» Remember that §; = % (slide #8)

A
J
» And that z; = wix + b

aC o1
SOa—l?}—5j

¢ SO b} « (1- a)b; — 0(5}
— Where a is a learning rate

— Regulates how much you react to each
sample

3/29/20 CS 510, Image Computation, ©Ross Beveridge

19

Adjusting w's

oC
l
awjk

_ -1l
= ay " 0;

¢ SO lek — (1 - C()lek - aa]l{_ldjl
— Where a is the same learning rate as before

— We are collectively minimizing the deltas by
heading downhill in the k+1 dimensional
space defined by w & b

3/29/20 CS 510, Image Computation, ©Ross Beveridge 20

Backpropagation (redux)

* Backpropagation updates weights in a
network, given

— Training samples
— Training labels
— A cost function
* Network nodes may be
— Non-linear perceptrons (the most common)
— Convolutional units
— Pooling units
— Batch normalization units

3/29/20 CS 510, Image Computation, ©Ross Beveridge

21

Step Back! Other Resources

* Modulo some notation ambiguity the
previous formula-based presentation if
fine, but for some of us unsatisfying

* It is best to approach the task of
understanding backpropogation
simultaneously from three angles.

1. Mathematical formulas (just finished)
2. Develop an internal visualization

3. Running code

3/30/20 . (CS510 , Image Computat ion, ©Ross Beveridge

I\/Iay | Recommend

cor) vww.youtube.com/watch?v=1lg3gGewQ5U Q) ¢ (3) t

= B3 YouTube O HoOOA 0

—
=

QOO0O0O0

Ot W o

-~ O

oo

0000000

<O

O..
7 B
7@
=20
i AN
A J

O

O

O

O

@

. b

O

000 000500000000

QOQQLO00Q -+

3BLUETBROWN SERIES S3-+E3
What is backpropagation really doing? | Deep learning, chapter 3

1,698,016 views * Nov 3, 2017 30K 264 SHARE SAVE

And Also

e0® < > @M blog.aloni.org/posts/backprop-with-ter ¢ O M O
h Back propagation with TensorFlow - Dan Aloni d

Dan Aloni's blog about search

Back propagation with TensorFlow

(Updated for TensorFlow 1.0, at March 6th, 2017)

When | first read about neural network in Michael Nielsen's Neural Networks and Deep Learning,
| was excited to find a good source that explains the material along with actual code. However
there was a rather steep jump in the part that describes the basic math and the part that goes
about implementing it, and it was especially apparant in the numpy -based code that imple-
ments backward propagation.

So, in order to explain it better to myself, and learn about TensorFlow in the process, | took it
upon myself to implement the first network in the book using TensorFlow by two means. First,
manually defining the back propagation step, and the second - letting TensorFlow do the hard
work using automatic differentiation.

3/30/20 CS 510, Image Computation, ©Ross Beveridge

24

Please Run and Play With ...

O] @ < | > ["'\0 localhost/courses/cs510/yr2020sp/home_resource & o |'_T’] m) 15

Home Syllabus Progress Assignments Resources Canvas

As the semester develops links to additional course resources will be placed here.

Early OpenCYV Tutorials

e Seven OpenCV tutorials used in lectures 2 and 3.

e Examples of the Fourier Transform, Template Matching and Canny Edge Detection.

Tensorflow

The web contains many helpful tutorials on tensorflow. I have only begun to scratch the surface. That caveat offered, I found these helpful.

o Grant Sandersgp s e srOWi websile and associated YouTube channel has a very nice walkthrough and visueresmssaation of
propogation. This is a must watch supplement to the usual formula based approach to explaining backpropogation.

e Dan Aloni's blog post on Back Propagation with TensorFlow. The bad news is this tutorial is firmly rooted in TensorFlow 1 rather then 2. The
good news, it is a rare explicit implementation of backpropogation! Thereore, it reveals what more modern APIs obscure. We will use this
tutorial as one of the three basic paths to understanding backpropogation. Here is our local and somewhat updated code aloni.zip
N —

As we will discuss in lecture today, | expect everyone to
setup a TF 1.14 environment and play with this code.

3/30/20 CS 510, Image Computation, ©Ross Beveridge 25

