Implementing Redundancy

Yashwant K Malaiya
Implementing Redundancy

Issues:
• Placement of *error containment filter* in space/time.
• Synchronization of redundant processes
• Redundant analog/asynchronous signals: not totally identical in value/timing
• Concurrent failure detection
• Policy: handling a failed module
• Avoiding correlated errors
Voter Placement

Voter can be cause of *single-source failures*

Non-redundant

TMR-version
A TMR System: Wakerly

- Errors in data-flow:
 - Info from memory filtered
 - Bad info in registers will be eventually replaced

- Errors in control (instruction sequencing)
 - Periodic software reset request (SRR)
 - At reset, registers & memory initialized

Why is voter after memory?

One-Third of the system

Containment in space

Containment in time
Synchronization Issues

• A TMR system may have
 • Clock-level synchronization
 • Non-synchronous implementation
 • Voting in software
 • Staggered job segments (Kameyama & Higuchi) to avoid correlation

\[
\begin{array}{cccccc}
 n & n+1 & n+2 & n+3 & n+2 & n+3 & n+4 \\
 n-1 & n & n+1 & n+2 & - & n+2 & n+3 \\
 n-2 & n-1 & n & n+1 & - & - & n+2 \\
 & OK & OK & x & & Based on voted result (context) & \\
\end{array}
\]
TMR Asynchronous/Analog Inputs

- What if an input is asynchronous (like interrupt request)?

- An input (from redundant sensors) is analog?
 - Allow a margin within which they are consider equal.

Spares:
- Unpowered: lower failure rates
- Powered: no switching transients
TMR Synchronization: Info, Clock

Clock choices:

- **Single clock**: common source failure; skew due to uneven load
- **Independent clocks synchronized initially**: synchronization not guaranteed over a long period
- **Separate clocks interlocked by voting**:

 ![Clock Diagram]

 - clock1
 - clock2
 - clock3

 V electronics clock1

Info synchronization: scrubbing persisting errors

- Copy from clean module
- Automatic periodic initialization of all modules
- Wait until bad info is eventually replaced by good (may need to save SP etc periodically)
On-line Testing

- On-line fault detection:
- Periodic scheduled testing
- Concurrent testing:
 a. self-testing logic
 b. duplex configuration

contain some redundancy
in space or time

Tests for some invariant property

- Only selected nodes need to be compared.
- Active and Shadow need to stay synchronized
References

