Fault Tolerant Computing
CS 530
Test Coverage & Defects
Yashwant K. Malaiya
Colorado State University
Test Coverage Measures

• Statement or Block coverage
• Branch or decision coverage
• P-use coverage: p-use pair: variable defined/modified - use as predicate
• C-use coverage: similar - use for computation
• Subsumption hierarchy:
 - Covering all branches cover all statements
 - Covering all p-uses cover all branches
Modeling: Defects, Time, & Coverage

Malaiya, Li, Bieman, Karcich, Skibbe, 1994
Li, Malaiya, Denton, 1998
Coverage Based Defect Estimation

• Coverage is an objective measure of testing
 ▪ Directly related to test effectiveness
 ▪ Independent of processor speed and testing efficiency
• Lower defect density requires higher coverage to find more faults
• Once we start finding faults, expect coverage vs. defect growth to be linear
Logarithmic-Exponential Coverage Model

- Hypothesis 1: defect coverage growth follows logarithmic model

\[C^0(t) = \frac{\beta^0_0}{N^0} \ln(1 + \beta^0_1 t), \quad C^0(t) \leq 1 \]

- Hypothesis 2: test coverage growth follows logarithmic model

\[C^i(t) = \frac{\beta^i_0}{N^i} \ln(1 + \beta^i_1 t), \quad C^i(t) \leq 1 \]
Log-Expo Coverage Model (2)

• Eliminating t and rearranging,
 \[C^0 = a^i_0 \ln[1 + a^i_1 (\exp(a^i_2 C^i) - 1)] \], \quad C^0 \leq 1

where \(C^0 \) : defect coverage, \(C^i \) : test coverage
\(a^i_0, a^i_1, a^i_2 \) : parameters; \(i \) : branch cov, p-use cov etc.

• For “large” \(C^i \), we can approximate

\[C^0 = -A^i + B^i C^i \]
Coverage Model, Estimated Defects

\[C^0 = -A^i + B^i C^i, \quad C^i > C^i_{knee} \]

- Only applicable after the knee
- Assumptions: Stable Software
Location of the knee

\[C_{\text{knee}} = 1 - \left(\frac{E_{\text{min}}}{D_{\text{min}} E_0} \right) D_0 \]

- Based on interpretation through logarithmic model
- Location of knee based on initial defect density
- Lower defect densities cause knee to occur at higher coverage
- Parameter estimation: Malaiya and Denton (HASE ‘98)
Data Sets Used
Vouk and Pasquini

• Vouk data
 ▪ from N version programming project to create a flight controller
 ▪ Three data sets, 6 to 9 errors each

• Pasquini data
 ▪ Data from European Space Agency
 ▪ C Program with 100,000 source lines
 ▪ 29 of 33 known faults uncovered
Defects vs. Branch Coverage

Data Set: Pasquini

Defects Expected

Fitted Model
Defects vs. P-Use Coverage

Data Set: Pasquini

Q: Will linear relation hold at very high coverage?

Defects Expected

Fitted Model

P-Use Coverage

Defects

Model Data
Estimation of Defect Density

• Estimated defects at 95% coverage, for Pasquini data (assume 5% dead code)
• 28 faults found, and 33 known to exist

<table>
<thead>
<tr>
<th>Measure</th>
<th>Coverage Achieved</th>
<th>Expected Defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>82%</td>
<td>36</td>
</tr>
<tr>
<td>Branch</td>
<td>70%</td>
<td>44</td>
</tr>
<tr>
<td>P-uses</td>
<td>67%</td>
<td>48</td>
</tr>
</tbody>
</table>
Defects vs. P-Use Coverage

Data Set: Vouk 3

- Defects Expected
- Fitted Model
Coverage Based Estimation

Data Set: Pasquini et al

Estimates are stable
Current Methods

• Development process based models allow for *a priori* estimates
 ▪ Not as accurate as methods based on test data

• Sampling methods often assume faults found as easy to find as faults not found
 ▪ Underestimates faults

• Exponential model
 ▪ Assume applicability of exponential model
 ▪ We present results of a comparison
The Exponential Model

Data Set: Pasquini et al

Estimate rises as new defects found

Estimates very close to actual faults

Test Cases

Defects

Defects Found

Estimate
Related articles

• Frankl & Iakouneno, Proc. SIGSOFT ‘98
 ▪ 8 versions of European Space Agency program, 10K LOC, Single fault reinsertion
• Williams, Mercer, Mucha, Kapur, 2001
 ▪ "Code coverage, what does it mean in terms of quality?,“
 ▪ analysis from first principles
• Peter G Bishop, SAFECOMP 2002
 ▪ A related model, unreachable code
Related articles

• Avaya lab data

• “The test effort increases exponentially with test coverage, but the reduction in field problems increases linearly with test coverage.”
Observations and Conclusions

• Estimates with new method are very stable
 ▪ Visual confirmation of earlier projections

• Which coverage measure to use?
 ▪ Stricter measure will yield closer estimate

• Some code may be dead or unreachable
 ▪ Found with compile or link time tools
 ▪ May need to be taken into account
Voak’s Observation

He thought that a model is not possible because he collected data for programs

- That were functionally identical (for redundancy)
- but independent implemented
- Problem: defects found with the same coverage did not match!
- He gave up, but gave us the data.
Voak’s Observation

He thought that a model is not possible because he collected data for programs

- That were functionally identical (for redundancy) but independent implemented
- Problem: defects found with the same coverage did not match!
- Reason: Different implementations may result in different testability.
Voak’s Observation

Schneider’s counter-example has low testability:
\[H = (h_1, h_2, h_3, h_{14}) = (23, 19, 1, 1) \]

May be implemented as
\[F = abcd + a'b'c'd' \]
Research Ideas

Some research that I would like someone to do

- Compare alternative models using data
- Model software evolution
- Connect detectability profile to our model