Redundant Array of Independent Disks

Yashwant K. Malaiya
Redundant Array of Independent Disks (RAID)

• Enables greater levels of performance and/or reliability

• How? By concurrent use of two or more ‘hard disk drives’.

• How Exactly?
 ▪ Striping (of data),
 ▪ Mirroring,
 ▪ Error correction techniques
Hard Disks

- Rotate: one or more platters
- Efficient for blocks of data (sector 512 bytes)
- Inherently error prone
- CRC to check for errors internally
- Need a controller
- Can fail completely
Standard RAID levels

• RAID 0: striping
• RAID 1: mirroring
• RAID 2: bit-level striping, Hamming code for error correction (not used anymore)
• RAID 3: byte-level striping, parity (rare)
• RAID 4: block-level striping, parity
• RAID 5: block-level striping, distributed parity
• RAID 6: block-level striping, distributed double parity
RAID 0

- Data striped across n disks
- Read/write in parallel
- No redundancy.

\[R_{sys} = \prod_{i=1}^{n} R_i \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. \(n = 14 \)
- \(R_{sys} = (0.9)^{14} = 0.23 \)
RAID 1

- Disk 1 mirrors Disk 0
- Read/write in parallel
- One of them may be used as backup.

\[R_{sys} = \prod_{i=1}^{n} [1 - (1 - R_i)^2] \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. n = 7 pairs
- \(R_{sys} = (2 \times 0.9 - (0.9)^2)^7 = 0.93 \)

Failed disk identified using internal CRC
RAID 2

• Used Hamming code check bits as redundancy
• Obsolete
RAID 3

- Byte level striping
- Dedicated parity disk
- If one fails, its data can be reconstructed using a spare

\[R_{sys} = \sum_{j=n-1}^{n} \binom{n}{j} R_j^j (1 - R_i)^{n-j} \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. n = 13, j = 12, 13
- \(R_{sys} = 0.62 \)
RAID 4

- Block level striping
- Dedicated parity disk
- If one fails, its data can be reconstructed using a spare

\[R_{sys} = \sum_{j=n-1}^{n} \binom{n}{j} R_j^j (1 - R_i)^{n-j} \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. \(n = 13, \ j = 12, \ 13 \)
- \(R_{sys} = 0.62 \)
RAID 5

- Distributed parity
- If one disk fails, its data can be reconstructed using a spare

\[
R_{sys} = \sum_{j=n-1}^{n} \binom{n}{j} R^j (1 - R_i)^{n-j}
\]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. \(n = 13, j = 12, 13 \)
- \(R_{sys} = 0.62 \)
RAID 6

- Distributed double parity
- If one disk fails, its data can be reconstructed using a spare
- Handles data loss during a rebuild

\[
R_{sys} = \sum_{j=n-2}^{n} \binom{n}{j} R_j^j (1 - R_i)^{n-j}
\]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. \(n = 13, j = 11, 12, 13 \)
- \(R_{sys} = 0.87 \)
Nested RAID Levels

- RAID 01: mirror of stripes
- RAID 10: stripe of mirrors
- RAID 50: block-level striping of RAID 0 with the distributed parity of RAID 5 for individual subsets
- RAID 51: RAID5 duplicated
- RAID 60: block-level striping of RAID 0 with distributed double parity of RAID 6 for individual subsets.
RAID 10

- Stripe of mirrors: each disk in RAID0 is duplicated.

\[R_{sys} = \prod_{i=1}^{ns} [1 - (1 - R_i)^2] \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. \(ns = 6 \) pairs,
- \(R_{sys} = 0.94 \)
RAID 01

- Mirror of stripes: Complete RAID0 is duplicated.

\[R_{sys} = [1 - (1 - \prod_{i=1}^{ns} R_i)^2] \]

- Ex: 3 year disk reliability = 0.9 for 100% duty cycle. ns = 6 for each of the two sets,
- \(R_{sys} = 0.78 \)

RAID 01: redundancy at higher level
• Multiple RAID 5 for higher capacity
• Multiple RAID 5 for higher reliability (not capacity)
RAIDS Comparison

<table>
<thead>
<tr>
<th>Level</th>
<th>Space efficiency</th>
<th>Fault tolerance</th>
<th>Read performance</th>
<th>Write performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>none</td>
<td>nx</td>
<td>nx</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>1 drive</td>
<td>2x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td><1</td>
<td>1</td>
<td>var</td>
<td>var</td>
</tr>
<tr>
<td>3</td>
<td><1</td>
<td>1</td>
<td>(n-1)x</td>
<td>(n-1)x</td>
</tr>
<tr>
<td>4</td>
<td><1</td>
<td>1</td>
<td>(n-1)x</td>
<td>(n-1)x</td>
</tr>
<tr>
<td>5</td>
<td><1</td>
<td>1</td>
<td>(n-1)x</td>
<td>(n-1)x</td>
</tr>
<tr>
<td>6</td>
<td><1</td>
<td>2</td>
<td>(n-2)x</td>
<td>(n-2)x</td>
</tr>
<tr>
<td>10</td>
<td>1/2</td>
<td>1/set</td>
<td>nx</td>
<td>(n/2)x</td>
</tr>
</tbody>
</table>
Additional Reading

- Modeling the Reliability of Raid SetS – Dell
- Triple-Parity RAID and Beyond, Adam Leventhal, Sun Microsystems
- Estimation of RAID Reliability
- Enhanced Reliability Modeling of RAID Storage Systems
Markov modeling

- We have computed reliability using combinatorial modeling.
- Time dependent modeling can be done failure / repair rates.
- Repair can be done using rebuilding.
- MTTDL: mean time to data loss
- RAID 1: data is lost if the second disk fails before the first could be rebuilt.

Reference: Koren and Krishna
RAID1 - Reliability Calculation

- **Assumptions:**
 - disks fail independently
 - failure process - Poisson process with rate λ
 - repair time - exponential with mean time $1/\mu$

- **Markov chain:** state - number of good disks

\[
\frac{dP_2(t)}{dt} = -2\lambda P_2(t) + \mu P_1(t)
\]

\[
\frac{dP_1(t)}{dt} = -(\lambda + \mu)P_1(t) + 2\lambda P_2(t)
\]

\[
P_0(t) = 1 - P_1(t) - P_2(t)
\]

\[
P_2(0) = 1; \quad P_0(0) = P_1(0) = 0
\]

- **Reliability at time t -**

\[
R(t) = P_1(t) + P_2(t) = 1 - P_0(t)
\]
RAID1 - MTTDL Calculation

- Starting in state 2 at $t=0$
 time before entering state 1 = $1/(2\lambda)$
- Mean time spent in state 1 is $1/(\lambda + \mu)$
- Go back to state 2 with probability $q = \mu/(\mu + \lambda)$
 or to state 0 with probability $p = \lambda/(\mu + \lambda)$
- Probability of n visits to state 1 before transition to state 0 is $q^{n-1}p$
- Mean time to enter state 0:
 $$T_{2\rightarrow0}(n) = n\left(\frac{1}{2\lambda} + \frac{1}{\lambda + \mu}\right) = n\frac{3\lambda + \mu}{2\lambda(\lambda + \mu)}$$

$$MTTDL = \sum_{n=1}^{\infty} q^{n-1} pT_{2\rightarrow0}(n) = \sum_{n=1}^{\infty} nq^{n-1} pT_{2\rightarrow0}(1) = \frac{T_{2\rightarrow0}(1)}{p} = \frac{3\lambda + \mu}{2\lambda^2}$$
Approximate Reliability of RAID1

- If $\mu >> \lambda$, the transition rate into state 0 from the aggregate of states 1 and 2 is $1/\text{MTTDL}$.

- Approximate reliability:

$$R(t) = e^{-t/\text{MTTDL}}$$
RAID 4/5: data is lost if the second disk fails before the first failed (any one of n) could be rebuilt.

\[
MTTDL = \frac{(2n-1)\lambda + \mu}{n(n-1)\lambda^2} \approx \frac{\mu}{n(n-1)\lambda^2}
\]

Detailed MTTDL calculators are available on the web.
The Disk Array Matrix