
1

Fault Tolerant Computing
CS 530

Lecture Notes 1
Introduction to the class

Yashwant K. Malaiya
Colorado State University

Instructor

• Instructor: Yashwant K. Malaiya, Professor
– malaiya @ colostate.edu
– Office: 356 CS MS Teams
– Hours: W 3:30-4:30 PM

• Textbook: None. Various sources, mostly
available on course website

• Canvas: Discussions, submissions, quizzes etc.

2

Introduction

• Please introduce yourself on Canvas Discussions
• Yashwant K. Malaiya

– Professor of Computer Science
• Interact with ECE, also supervise System Eng PhDs

– Background
• VLSI defects, fault modeling, testing
• Software testing, test effectiveness, test coverage
• Security Vulnerability discovery, economics, risk evaluation

3

Evaluation
• Distribution

– 20% Midterm (Th March 11) Respondus LDB
5% Participation
25% Final (M May 11) Respondus LDB
20% Research Project
30% Assignments and quizzes

• S 001 & local S 801 students:
– Midterm, Final at announced time

• Non-local S 801 students:
– Must be taken during the speciified time window

• The two groups will be evaluated separately,
– but with the same overall standard

4

Research Project

• Will have a list of suggested topics later.
• March 6: a one-page proposal

– motivation, brief scope of study and some specific
references.

• April 1: progress report
• April 21: slides needed

– A presentation will be required.
• May 6: final report (two column format, TurnItIn)

5

Topics: Testing, Reliability, Redundancy

• Introduction: Terminology, redundancy
• Digital systems: overview, fault models, testing, test

effectiveness
• Probabilistic concepts: random variables and stochastic

processes, probabilistic testing
• Reliability Theory: simple and redundant systems,

implementation issues, time redundancy
• Software Reliability: Static and dynamic approaches
• Coding theory and applications: Parity, CRC, RAIDs
• Quantitative Security: vulnerabilities and risk
• Emerging topics: Hadoop file systems etc.

6

7

Fault Tolerant Computing
CS 530

Lecture Notes 1
Introduction

Yashwant K. Malaiya
Colorado State University

8

What We Will Study

• Essential terms
• How defects arise
• Fault taxonomies
• Fault handling
• Reliability attributes and measures
• Redundancy types

9

Fault-tolerant Computing

• Objective: to achieve very high reliability in
computing

• How:
– Design for high reliability
– Test to find and remove potential faults
– Use redundancy to tolerate faults

• In hardware, software & media
– Some approaches are common
– Some not

Redundancy

TestingDesign

Approaches

Hardware

MediaSoftware

Systems

10

About this course

• Texts (and courses) generally focus on
– Reliability or Testing or Redundancy
– Hardware or software

• This course attempts to address
– different aspects of highly reliable computing
– Relationships among Reliability, Testing and Redundancy
– Similarities and differences between hardware & software

issues
– Some quantitative aspects of security

• No single book used. Study based on
– Course notes
– Articles (including some by instructor)
– Various sources

11

Murphy’s Law

• Anything that can go wrong, will.
– (Actually, not by Murphy but by Finagle)

• To every law there is an exception.
• CS530 laws:
• Anything that can go wrong, it eventually will, but

– It may not go wrong for a while
– It may not go wrong the next time
– Only one thing may go wrong at a time

12

Reliability: increasing concern

Historical
• High reliability in computers was needed in critical applications:

space missions, telephone switching, process control etc.
Contemporary
• Extraordinary dependence on computers: on-line banking,

commerce, cars, planes, communications etc.
• Hardware/Software/Systems are increasingly more complex
• Things simply will not work without special reliability measures

13

Correct Operation in Computing

Good
software

Good
hardware

Good data

Correct
human

operation

These are the system components. All are needed for proper operation

14

Reliability approaches:
Fault Avoidance Vs. Tolerance

• Fault avoidance: eliminate problem sources
– Remove defects: Testing and debugging
– Robust design: reduce probability of defects
– Minimize environmental stress: Radiation shielding etc
– Impossible to avoid faults completely

• Fault tolerance: add redundancy to mask effect
– Additional resources needed (more later)
– Examples:

• Error correction coding
• Backup storage
• Spare tire etc

15

Terminology

• Latent fault: which has not yet produced error
– Faulty component will produce error only when used by a process.

• Latent error: which has not yet produced failure.
– An infected person may not show symptoms of a disease.

• Unfortunately, the terminology is not standard.
– You need to ensure you have understood author’s intent.

“Defects”

(physical)

“Errors”

(information)

“Failures”

(application)

Internal to system external

16

Origin of Defects in Objects
(in hardware or software)

• Good object wearing out with age
– Hardware (software can age too)
– Incorrect maintenance/operation

• Good object, unforeseen hostile environment
– Environmental fault

• Marginal object: occasionally fails in target environment
– Tight design/bad inputs

• Implementation mistakes
• Specification mistakes
• Intentional actions (security issues)

Increasing
human

responsibility

Object: refers to a piece of
hardware or software

17

Fault Taxonomies
• Cause (previous slide)
• Nature:

– Software
– Hardware

• Digital: causing a change in binary (logic) behavior
• Analog: Ex: high supply current

• Duration of the fault:
– Permanent: You have to throw away the unit
– Temporary

• Intermittent: marginal system: Ex: a loose connection
• Transient: environmental: Ex: charged particles

causing soft errors
• Permanent with repair: repair makes the fault go away

18

Fault Taxonomies

Introductions

• When I call your name
• Enable microphone and camera and say

– Your name
– Where you are from (city, country)
– What you are doing at CSU and interests

19

20

Why We Need High Reliability?
• High availability systems:

– Telephone
– Transaction processing: banks/airlines

• Long life missions:
– Unscheduled maintenance too costly
– Long outages, manual reconfiguration OK

• Critical applications:
– Real-time industrial control
– Flight control

• Ordinary but widespread applications:
– CDs: encoding
– Internet: packet retransmission

• Systems needing security

21

What to do about faults

Finding & identifying faults:
• Fault detection: is there a fault?
• Fault location: where?
• Fault diagnosis: which fault it is?
Automatic handling of faults
• Fault containment: blocking error flow

– Fault masking: fault has no effect
• Fault recovery: back to correct operation

Remember the terms in blue.

Easier problem

Harder problem

22

Common Reliability Measures

• Failure rate: fraction of units failing/unit time
– 1000 units, 3 failed in 2 hours
– Failure rate = 3/(1000x2) = 1.5x10-3 per hour

• Mean time to failure (MTTF): expected time before
unit fails
– Corresponds to inverse of failure rate

• “Reliability”= probability system will survive to
time t

• “Availability”: probability that system is
operational at time t
– Corresponds to fraction of time system is operational

23

Common Reliability Attributes 1

• Dependability: combination of several measures
• Safety: attribute of a system which either

operates correctly or fails in a safe manner.
– “Fail-safe”: ex: traffic light blinks red upon failure

• Performability: combination of reliability &
performance
– “Graceful degradation”: loss of performance due to

minor failures

Some of the terms are not defined in a way to be quantifiable.

24

Common Reliability Attributes 2

• Security: confidentiality, integrity, (availability)
authentication, non-reupediation

• Survivability: combination of dependability and security
• Testability: ease of detecting presence of a fault

– Controllability and observability
• Maintainability: ease of repairing a system after failure
Quantitative measures for testability have been proposed, but not

widely accepted.
Quantitative measures for security are currently evolving..

25

System Response to Faults

• Error on output: may be acceptable in non-critical
systems if happens only rarely

• Fault masking: output correct even when fault from
a specific class occurs
– Critical applications: air/space/manufacturing

• Fault-secure: output correct or error indication
– Retryable: banking, telephony, payroll

• Fail safe: output correct or in safe state
– Flashing red traffic light, disabled ATM

26

Need for fault tolerance: Universal &
Basic

Natural objects:
• Fat deposits in body: survival in famines
• Clotting of blood: self repair
• Duplication of eyes: graceful degradation upon failure
Man-made objects
• Redundancy in ordinary text
• Asking for password twice during initial set-up
• Duplicate tires in trucks
• Coin op machines: check for bad coins
Security? Thorns, White blood cells

27

Redundancy
• Spatial (hardware) Redundancy

– Replication (higher level)
– Encoding (low level)

• Temporal (time) Redundancy
– Encoding
– Rollback and retry
– Retransmission in networks (ARQ)

• Procedural Redundancy
– Checking (small overhead)
– Software redundancy: n-version
– Design verification

Duplex for self-checking
TMR: self-correction
Spare: self repair

Fewer bits: self-checking
More bits: self-correcting

Both “Backward error
recovery” BER

28

Redundancy (Cont.)
• Analog Redundancy

– Use of slack or margin,
– Ex: allow for extra delays in chips due to temp rise

• Information (or Data) Redundancy: already included in
– Spatial (Ex: bus with 8 bits + 1 bit parity) or
– Temporal (Ex: packet transmitted serially, with party bit at the

end)
• Exact classification is sometimes hard
• Disadvantages:

– Overhead
– Difficulty of testing
– Unmanaged/excessive redundancy: increase unreliability

Is encryption/decryption
redundancy?

29

Fault-tolerant Computing

• Deterministic approaches
– Based on simplifying assumptions: “fault model”
– Obtain methods using the models: test generation
– Evaluation of effectiveness
– Used for Testing & combinatorial fault-tolerance

• Probabilistic approaches
– We can’t predict exactly when a person will die, but we

can get “life expectancy = 77.2 years”, if we have data
– Used for evaluating, achieving and optimizing reliability
– Random testing

30

Course Topics

Testing
• Fault-modeling, test generation
• Testability and black-box testing
Reliability & Redundancy
• Permanent and temporary faults
• Replication and retry
• Pursuit of ultra-reliability
Software reliability/security
• Defects, factors, reliability growth
• Reliability strategies
Emerging issues

31

References
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_161

12.pdf A Conceptual Framework for System Fault Tolerance
• A detailed introduction to Fault Tolerance

http://www.eventhelix.com/RealtimeMantra/FaultHandling
Fault Handling and Fault Tolerance
• Introduction to how fault tolerance is achieved

http://rodin.cs.ncl.ac.uk/Publications/avizienis.pdf
Dependability And Its Threats: A Taxonomy" by Algirdas Avizienis, Jean-

Claude Laprie, B. Randell
• Advanced intro by distinguished researchers

https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_16112.pdf
http://www.eventhelix.com/RealtimeMantra/FaultHandling
http://rodin.cs.ncl.ac.uk/Publications/avizienis.pdf

