Fault Tolerapnt. Computing

///’ —
e —

Instructor

- Instructor: Yashwant K. Malaiya, Professor

— malaiya @ colostate.edu
— Office: 356 CS MS Teams
— Hours: W 3:30-4:30 PM

- Textbook: None. Various sources, mostly
available on course website

- Canvas: Discussions, submissions, quizzes etc.

Introduction

- Please introduce yourself on Canvas Discussions

- Yashwant K. Malaiya

— Professor of Computer Science
* Interact with ECE, also supervise System Eng PhDs
— Background

« VLSI defects, fault modeling, testing
- Software testing, test effectiveness, test coverage
- Security Vulnerability discovery, economics, risk evaluation

Qoloradto
SRR 3

Evaluation

Distribution

— 20% Midterm (Th March 11) Respondus LDB
5% Participation
25% Final (M May 11) Respondus LDB
20% Research Project
30% Assignments and quizzes

S 001 & local S 801 students:

— Midterm, Final at announced time
Non-local S 801 students:
— Must be taken during the speciified time window

The two groups will be evaluated separately,
— but with the same overall standard

Research Project

- Will have a list of suggested topics later.

- March 6: a one-page proposal

— motivation, brief scope of study and some specific
references.

- April 1: progress report
« April 21: slides needed
— A presentation will be required.
- May 6: final report (two column format, Turnltin)

Qolradlo
Sl

Topics: Testing, Reliability, Redundancy

Introduction: Terminology, redundancy

Digital systems: overview, fault models, testing, test
effectiveness

Probabilistic concepts: random variables and stochastic
processes, probabilistic testing

Reliability Theory: simple and redundant systems,
implementation issues, time redundancy

Software Reliability: Static and dynamic approaches
Coding theory and applications: Parity, CRC, RAIDs
Quantitative Security: vulnerabilities and risk
Emerging topics: Hadoop file systems etc.

bﬁ—%%ui =

Qoloradto

0\

-

C8JI530_—J -=. = " '

i Ij\ToIerdnt Compun y

ecture NPTes 1 LY /
Introductlon i

A /\‘

Yashwant K. Malalya
Colorado State Universit

-

—

Qo 'Q)i"’;’d‘.O)
W fA 7
Qif‘s!h‘-‘
\ TIING SRy

What We Will Study

- Essential terms

- How defects arise

- Fault taxonomies

- Fault handling

- Reliability attributes and measures
- Redundancy types

-
2
x5
_}’_7
e
©

Fault-tolerant Computing

Objective: to achieve very high reliability in
computing Approaches
How:

— Design for high reliability

— Test to find and remove potential faults
— Use redundancy to tolerate faults

In hardware, software & media
— Some approaches are common
— Some not

Redundanc

About this course

- Texts (and courses) generally focus on
— Reliability or Testing or Redundancy
— Hardware or software
- This course attempts to address
— different aspects of highly reliable computing

— Relationships among Reliability, Testing and Redundancy

— Similarities and differences between hardware & software
issues

— Some quantitative aspects of security
* No single book used. Study based on

— Course notes

— Articles (including some by instructor)

— Various sources

Qollorado
SiGlie,

Murphy’s Law

Anpthing that can go wrong, will.
— (Actually, not by Murphy but by Finagle)

o ebery lato there i8 an exception.
CS530 laws:

Anything that can go wrong, it ebentually will, but
— It may not go wrong for a while
— It may not go wrong the next time
— Only one thing may go wrong at a time

Qolradlo
Sl

11

Reliability: increasing concern

Historical
- High reliability in computers was needed in critical applications:

space missions, telephone switching, process control etc.
Contemporary

- Extraordinary dependence on computers: on-line banking,
commerce, cars, planes, communications etc.

- Hardware/Software/Systems are increasingly more complex
« Things simply will not work without special reliability measures

Correct Operation in Computing

Good
software

Good
hardware

operation

These are the system components. All are needed for proper operation

@ELJ AU 13

"Vt

Reliability approaches:
Fault Avoidance Vs. Tolerance

- Fault avoidance: eliminate problem sources
— Remove defects: Testing and debugging
— Robust design: reduce probability of defects
— Minimize environmental stress: Radiation shielding etc
— Impossible to avoid faults completely

- Fault tolerance: add redundancy to mask effect
— Additional resources needed (more later)

— Examples:
 Error correction coding
« Backup storage
- Spare tire etc

14

“Defects”

(physical)

Terminology

Internal to system

“Errors”

external

Qo}

(information)

Latent fault: which has not yet produced error
— Faulty component will produce error only when used by a process.
Latent error: which has not yet produced failure.
— An infected person may not show symptoms of a disease.
Unfortunately, the terminology is not standard.
— You need to ensure you have understood author’s intent.

L3

|
WO

N|

“Failures”

(application)

0o

15

Origin of Defects in Objects

(in hardware or software)

- Good object wearing out with age
— Hardware (software can age too)
— Incorrect maintenance/operation

Incrﬁeasfing - Good object, unforeseen hostile environment
human — Environmental fault
responsibility. parginal object: occasionally fails in target environment
— Tight design/bad inputs
.~ . -+ Implementation mistakes
* . Specification mistakes
- Intentional actions (security issues)

Qollorado Object: refers to a piece of

Silie hardware or software o

Fault Taxonomies

- Cause (previous slide)
* Nature:
— Software
— Hardware
- Digital: causing a change in binary (logic) behavior
- Analog: Ex: high supply current
* Duration of the fault:
— Permanent: You have to throw away the unit
— Temporary
- Intermittent: marginal system: Ex: a loose connection

- Transient: environmental: Ex: charged particles
causing soft errors

- Permanent with repair: repair makes the fault go away

Qolorado
Wit

SIAB

\ e

17

Fault Taxonomies

“It goes on to say, ‘The fault is not with the
hardware. It Is with you—the software!" "

18

Introductions

* When | call your name

- Enable microphone and camera and say
— Your name
— Where you are from (city, country)
— What you are doing at CSU and interests

19

Why We Need High Reliability?

- High availability systems:
— Telephone
— Transaction processing: banks/airlines
- Long life missions:
— Unscheduled maintenance too costly
— Long outages, manual reconfiguration OK
 Critical applications:
— Real-time industrial control
— Flight control
- Ordinary but widespread applications:
— CDs: encoding
— Internet: packet retransmission
- Systems needing security

Qolorsado

a
1Y

What to do about faults

Finding & identifying faults: 2 —aior oroblom
- Fault detection: is there a fault?

- Fault location: where?

- Fault diagnosis: which fault it is?
Automatic handling of faults

- Fault containment: blocking error flow
— Fault masking: fault has no effect

- Fault recovery: back to correct operation

Harder problem

' — Remember the terms in blue.
(G‘on‘:o(r)J: FAUQ) 21

AU
TTITCISITS

Common Reliability Measures

- Failure rate: fraction of units failing/unit time
— 1000 units, 3 failed in 2 hours
— Failure rate = 3/(1000x2) = 1.5x10-3 per hour
« Mean time to failure (MTTF): expected time before
unit fails
— Corresponds to inverse of failure rate

- “Reliability”’= probability system will survive to
time t
- “Availability”: probability that system is
operational at time t
— Corresponds to fraction of time system is operational

Al kAaveesaA b
Qoo 22

Common Reliability Attributes 1

- Dependability: combination of several measures

- Safety: attribute of a system which either
operates correctly or fails in a safe manner.
— “Fail-safe”: ex: traffic light blinks red upon failure

- Performability: combination of reliability &
performance

— “Graceful degradation”: loss of performance due to
minor failures

Some of the terms are not defined in a way to be quantifiable.

)

23

Common Reliability Attributes 2

- Security: confidentiality, integrity, (availability)
authentication, non-reupediation
- Survivability: combination of dependability and security
- Testability: ease of detecting presence of a fault
— Controllability and observability

- Maintainability: ease of repairing a system after failure

Quantitative measures for testability have been proposed, but not
widely accepted.

Quantitative measures for security are currently evolving..

Oolorado
D= S

AU

\ TGy

24

System Response to Faults

Error on output: may be acceptable in non-critical
systems if happens only rarely

Fault masking: output correct even when fault from
a specific class occurs
— Critical applications: air/space/manufacturing

Fault-secure: output correct or error indication
— Retryable: banking, telephony, payroll

Fail safe: output correct or in safe state
— Flashing red traffic light, disabled ATM

Need for fault tolerance: Universal &
Basic

Natural objects:

Fat deposits in body: survival in famines

Clotting of blood: self repair

Duplication of eyes: graceful degradation upon failure
Man-made objects

Redundancy in ordinary text

Asking for password twice during initial set-up

Duplicate tires in trucks

Coin op machines: check for bad coins

Security? Thorns, White blood cells

26

Redundancy

- Spatial (hardware) Redundancy Duplex for self-checking

TMR: self-correction

— Replication (higher level) L Spare: self repair
— Encoding (low level) - Fewer bits: self-checking
. More bits: self- ti
. Temporal (tlme) Redundancy ore bits: self-correcting
B EnCOdlng ‘ Both “Backward error

— Rollback and retry recovery” BER

|
— Retransmission in networks (ARQ)

- Procedural Redundancy

— Checking (small overhead)
— Software redundancy: n-version ‘
— Design verification

Oolorado
N
SRS 27
\ 'n!\\%‘u\“

Redundancy (Cont.)

- Analog Redundancy
— Use of slack or margin,
— Ex: allow for extra delays in chips due to temp rise

- Information (or Data) Redundancy: already included in
— Spatial (Ex: bus with 8 bits + 1 bit parity) or

— Temporal (Ex: packet transmitted serially, with party bit at the
end)

« Exact classification is sometimes hard
- Disadvantages:
— Overhead

— Difficulty of testing
— Unmanaged/excessive redundancy: increase unreliability

Yol ks |
(G'OA» DLW 28

G
FILVCIS IO

Fault-tolerant Computing

« Deterministic approaches
— Based on simplifying assumptions: “fault model”
— Obtain methods using the models: test generation
— Evaluation of effectiveness
— Used for Testing & combinatorial fault-tolerance

- Probabilistic approaches

— We can’t predict exactly when a person will die, but we
can get “life expectancy = 77.2 years”, if we have data

— Used for evaluating, achieving and optimizing reliability

— Random testing

Qoloradto
S&ag

29

Course Topics

Testing
Fault-modeling, test generation
Testability and black-box testing
Reliability & Redundancy
Permanent and temporary faults
Replication and retry
Pursuit of ultra-reliability
Software reliability/security
Defects, factors, reliability growth
Reliability strategies
Emerging issues

Qoloradto
SAE

30

References

A Conceptual Framework for System Fault Tolerance
A detailed introduction to Fault Tolerance

Fault Handling and Fault Tolerance
Introduction to how fault tolerance is achieved

Dependability And Its Threats: A Taxonomy" by Algirdas Avizienis, Jean-
Claude Laprie, B. Randell

Advanced intro by distinguished researchers

Oolorado
SGie,
STHVCISIIN

31

https://resources.sei.cmu.edu/asset_files/TechnicalReport/1992_005_001_16112.pdf
http://www.eventhelix.com/RealtimeMantra/FaultHandling
http://rodin.cs.ncl.ac.uk/Publications/avizienis.pdf

