
January 21, 2021

Objectives

- The number of potential defects in a unit under test is extremely large.
- A fault-model presumes that most of the defects can be described by a well defined faults (as given later in this Lecture Notes).
- Here we primarily focus on hardware, however there is something analogous in software ("test coverage").

Digital Bugs

Fault Modeling

- Why fault modeling?
- Stuck-at 0/1 fault model
- The single fault assumption
- Bridging and delay faults
- MOS transistors and CMOS
- Switch-level fault model
 - Stuck-on/open
 - Shorts and IDDQ

Fault Modeling

•Fault Model: a set of assumed faults in a system such that testing for them will test for most faults of a specific class.

- •Used for test generation, fault simulation and quality evaluation.
- •A fault model hides complexities of actual defects. Infinitely many defects possible.
- •Fault Models are based on past knowledge of defect modes and modeling experience.

Common Fault Models

- No model: test exhaustively
- Hardware fault models:
 - Gate level:
 - stuck-at 0/1: most common
 - bridging faults
 - delay faults
 - Transistor level: stuck on/open faults
 bridging faults
 - Functional fault models
- Software fault models?
 - No formal fault model, but the software test coverage concept is closely related.

Exhaustive testing: Applying all possible combinations

Failure mechanisms in hardware

- **Temporary:** sensitivity to charged particles etc.
- Permanent
 - Opens: broken connection, also near-opens
 - Shorts: unwanted connection, also near shorts
 - Can be seen in magnified chip photos
 - Others
- Imperfect devices
 - Analog impairments like excessive delays

Stuck-at 0/1 Model

- Classical model, well developed results/methods
 - Many opens and shorts result in a node getting stuck-at a 0 or 1.
- May not describe some defects in today's VLSI.
 - still a nice way of structural "probing". Covering all stuck-at 0/1 will result in covering a large fraction of all faults.
- Model: any one or more of these may be stuck at 0 or 1: a gate input, a gate output, a primary input.
- Justification: many lower level defects can be shown to have an equivalent effect.

Common abbreviations:

s-a-0, s-a-1

What is a "test"?

- A test for a specific fault is an input combination which results in different outputs for the normal and faulty circuits.
 - Application of a test will reveal the presence or absence of that fault, by observation of the output.
- For a combinational circuit, a test is called a test vector or a test pattern.
- A set of tests is called a test set.

Stuck-at 0/1 Example

Normal function: Z= x1x2+x2x3

Note that a s-a-0 and X2 s-a-0 have different impact.

Faulty Function when a fault is present: $x2 = x-1 \Rightarrow z = x1+x3$ $a = x-1 \Rightarrow z = x1+x2x3$ $b = x-1 \Rightarrow z = x1x2+x3$ $c = x-1 \Rightarrow z = 1$

z s-a-1 ⇒z = 1

Example: Find a test vector for x2 s-a-1:

Input = (x1,x2,x3) = (0,0,1) Output = 0 normally

1 if faulty

Single Fault Assumption

- Assumption: only one fault is present at a time.
- Significantly reduces complexity.
- Good for fault detection: complete single stuck
 test set will detect almost all multiple faults.
- Not good for fault location.
- A Multiple fault is a simultaneous presence of several single faults.
- How many *multiple faults in a unit*?
 - Assume k lines
 - 3 states per line: normal, s-a-0, s-a-1
 - Total 3^k-1 faulty situations! (For k=1000, total 1.3x10⁴⁷⁷)

Colorado State

Delay Faults

- Some defects can cause a gate to respond after an excessive propagation delay.
- As a result some chips will not work at the intended clock frequency, but may work at a lower frequency (i.e. slower speed).
- Delay faults are quite common and thus all chips must undergo testing for potential delay faults.

Bridging (Short) Fault Model

- Model: Two lines can get shorted (bridged)
- Common assumption: only *nearby* lines can be bridged.
- Impact of a short can depend on the technology and transistor dimensions. Sometimes a 0 dominates over a 1 causing both bridged lines to become 0. Sometimes a 1 may dominate.

Transistor Level Faults

- A digital circuit has two power supply terminals: High (often called *VDD*) and Low (often called ground).
- A transistor is a switch that either on (conducts current) or open.
- Output of a gate is High (1), when the output is connected to High terminal through the transistor assembly. Similarly the output is Low (0) when it gets connected to Low terminals.

Transistor-level faults: Impact

Shorts or opens in the transistor assembly can cause these behaviors:

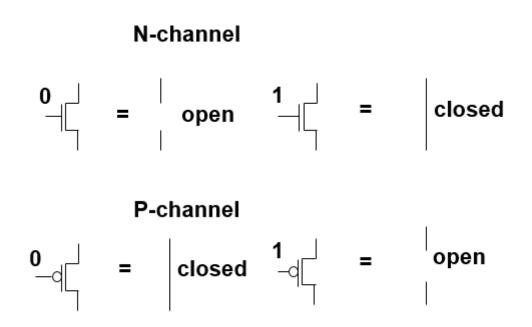
- Output cannot become 1
- Output cannot become 0
- Output behaves as if one of the inputs was always 1 (or 0), regardless of actual value of the input.
- If an output gets connected to both High and Low supply terminals at the same time, it causes shorting between them, causing a very high current to flow. Current-based testing is often called IDDQ testing.

References

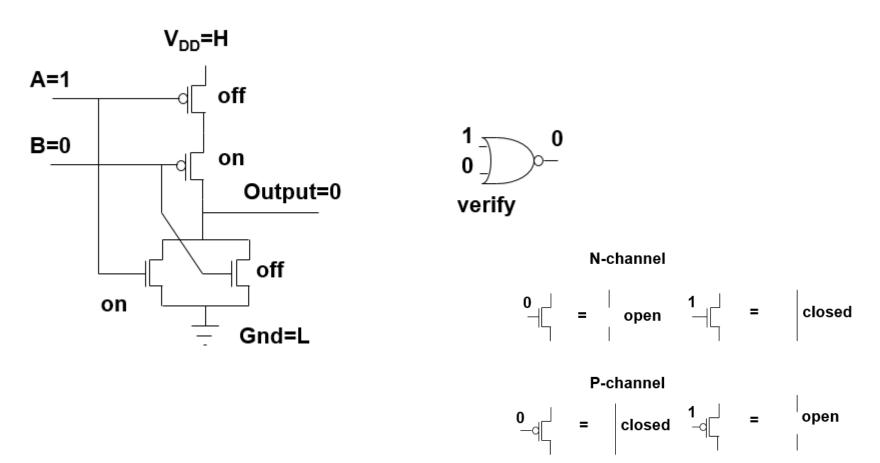
- Design for Testability in Digital Integrated circuits, Bob Strunz, Colin Flanagan, Tim Hall, <u>http://www.cs.colostate.edu/~cs530/digital_testing.pdf</u>
- Tutorial: Delay Fault Models and Coverage, Proc 11th Int Conf VLSI Design, Page: 364, 1998, Ananta K. Majhi, Vishwani D. Agrawal http://www.cs.colostate.edu/~cs530dl/pap/majhiagrawal_delay.pdf
- R. Rajsuman, A.P.Jayasumana, Y.K.Malaiya, On Accuracy of Switch-Level Modeling of Bridging Faults in Complex Gates, 24th Conference on Design Automation, June 1987, pp. 244 250. <u>http://www.cs.colostate.edu/~cs530dl/pap/acc_sw_level.pdf</u>
- W.K. Al-Assadi, Y.K. Malaiya, A.P. Jayasumana,
- Faulty behavior of storage elements and its effects on sequential circuits, IEEE Trans
 VLSI, Dec. 1993, pp, 446 452 <u>http://www.cs.colostate.edu/~cs530dl/pap/storage.pdf</u>
- Y,K. Malaiya, A.P. Jayasumana, Qiao Tong, S.M. Menon, Enhancement of resolution in supply current based testing for large ICs, VLSI Test Symp., April 1991, pp.291 - 296. http://www.cs.colostate.edu/~cs530dl/pap/resolution_supply.pdf
- Y.K. Malaiya and R. Narayanaswamy,"Modeling and Testing for Timing Faulls in Synchronous Sequential Circuits," IEEE Design & Test, pp.62-74,1984 *In library*

Special Interest Slides

 The rest of the slides in this Lecture Notes are specialized. Skip them, unless you are interested in the hardware testing field.



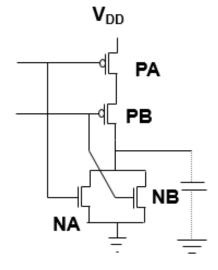
Defects


MOS Transistors

Fault Tolerant Computing ©Y.K. Malaiya

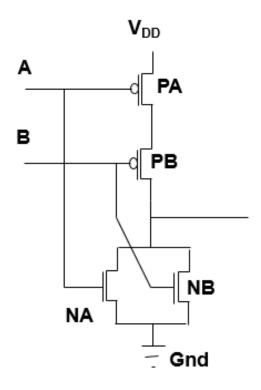
CMOS NOR Gate

Switch-level Fault Model (1)

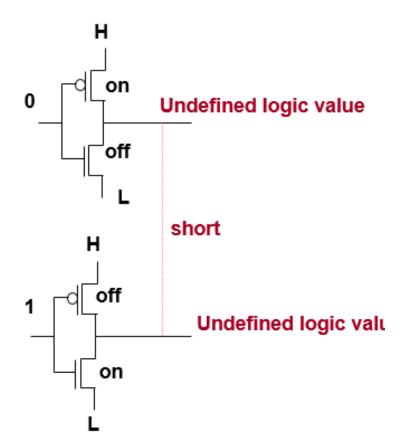

Model: A transistor may be •

٠

- stuck-open
- Stuck-on


PA stuck-open: output effectively s-a-0 NA stuck-open: To sensitize output ٠

- (A,B)=(1,0) Normal output: 0
 - Faulty output: high imp: previous value: sequential behavior!
- Needed test-pair
- T1 (0,0) output= 1 (initialize)
- T2 (1,0) 0 normal test 1 if faulty


Switch-level Fault Model (2): Stuck-ON

- Assume PA is stuck-ON
 - (A,B)=(1,0) ⇒normal out=0 faulty out=?
- Depends on relative resistances (dimensions etc)
- Low resistance between V_{DD} and Gnd: very high supply current (I_{DDQ})

Shorts and IDDQ

•Logical value can not be predicted in general.

• Very high supply current (I_{DDQ})

•Generally I_{DDQ} –based testing is very effective for detecting some defects.

Z1 = x1 + x2

Z2 = x2 + x3

OR

0/1

Faulty function with AND bridging:

Z1 = (x1x2) + (x1x2) = x1x2

Z2 = (x1x2) + x3

Feedback bridging can causeOscillations: odd inversions,

Sufficient delay

Settling at intermediate voltage
 level

AND

bridge

x1

x2

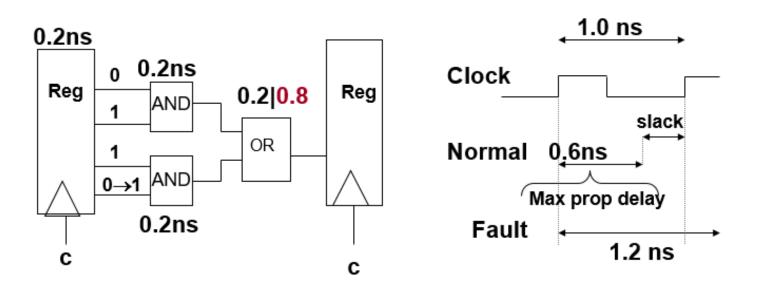
х3

AND

OR

OR

1


1/0

0

1/0

Delay Fault Model

- Excessive path delay or gate delay
- Signals may get sampled before stabilization
- Example: OR gate delay increases from 0.2 to 0.8 ns.

 The fault causes the longest path to take 1.2 ns, causing sampling

 before signal stabilizes.

 View 1, 2021
 Fault Tolerant Computing
©Y.K. Malaiya