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Test Generation: Combinational 

•Algebraic: Boolean difference
•Structural: D-notation
•Sensitized path, single-path propagation
•D-algorithm
•Fault-collapsing, Test set minimization
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Testing

• We assume that tests are applied at the inputs 
and the response is observed at the outputs of 
the unit-under-test.

• A test detects the presence of a fault(s), if the 
output is different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional 

description of the unit, not its structure to obtain tests. 
– Structural testing: uses the structural information to 

generate tests. Requires more effort, but can be more 
thorough.
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Random Testing

• Random testing is a form of functional testing. In 
random testing, each test is chosen such that it 
does not depend on past tests.

• In actual practice, the “random” tests are 
generated using Pseudo-random algorithms that 
approximate randomness. 

• As we will discuss later, random testing can be 
effective for moderate degree of testing, but not 
for thorough testing.
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Test coverage

• A single test typically covers (i.e. tests) for 
several potential faults.

• The coverage obtained by a test-set can be 
obtained using fault simulators for hardware. 

• The test coverage achieved by a test-set is given 
by ratio:

Number of faults covered
coverage =      -------------------------------

Total number of possible faults
• By convention, coverage is evaluated for stuck-at 0/1 faults 

in hardware, often given in percentage.
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Testing for Individual Faults

• First we consider structural testing for individual 
faults (test generation problem).

• We then consider reducing the number of faults 
to be considered (fault collapsing problem).

• Next we consider reducing the number of tests 
that need to be applied (test-set compaction 
problem).
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Test generation: Some Basics (1)

• Approaches:
– Symbolic
– Based on heuristics

• Needed:
– Fault excitation: triggering the fault to create error 
– Error propagation: propagating error to the output

• Notation: 
– normal  function f, 
– faulty fa with fault a

• Vector â=(a1, a2, ..an) is a test if   f(â)¹fa(â)
• All tests are contained in expression  T = fÅfa
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Test generation: Some Basics (2)
• All tests are contained in T, where T = fÅfa

T =   A’B  (01)  is a test. The only test.

i.e.  T is the set of vectors for which normal and faulty outputs are different.  

fÅfa is 1 for combinations for 

which Karnaugh maps of f 
and fa are different.
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Boolean Difference Method
Theorem: Assume input xi has fault a which is s-a-0. Then
set of tests is given by

• Note that Boolean Difference df/dxi represents 
conditions for which output is susceptible to 
input xi.
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Boolean difference (2)

• Proof: 
Using Shanon’s expansion theorem which states that 
f(xi)= xi fi(0)+ xi fi(1)
Note that fa(X)=fi(0)
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Boolean difference (3)
• Proof: Details
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Boolean Difference: Example

df/dB = f(A,0,C) Å f(A,1,C)
=CÅA  =AC+AC

Hence

T =B (AC+AC) = ABC+ABC
=(100,001)
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Boolean Difference: Internal Nodes

• Consider an internal node h=h(X) s-a-1. Express the original 
function f(X) as fh(X,h). Tests for h s-a-1 are given by 
!𝒉(X) dfh(X,h)/dh.

f(A,B,C)=AB+BC   h(A,B)=AB

fh(B,C,h)=h+BC 

dfh/dh =  fh(0,B,C)Åfh(1,B,C) = (BC) Å1
= BC  =B+C

T = h dfh/dh = (AB)(B+C) = (A+B)(B+C) = AB+AC+BC

=010, 011, 000, 100  (four vectors!)

00 01 11 10

0 1 0 1 1
1 1 0 0 0

BC
A
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D-Notation
• Notation: Line has value D if it is 1 normally and 0 

in presence of the fault. Line has value `D if it is 0 
normally and 1 in presence of the fault. 
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Single Path Propagation
• Excitation: 

– h=0 normally. Need 
A,B=0,0

• Propagation:
– Other AND input:1
– Other OR input: 0

• Justification: 
– C=1 already. E=x (don’t 

care)
• Test is (0,0,1,x)

Write on diagram

Single path propagation attempts to 

propagate error using a single path 
from the fault site to an output.
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Single Path Propagation may fail

• Single Path Propagation may fail in some cases 
even when a test exists.

• In the example in the next slide, an attempt to 
propagate an error using a strictly single path 
fails.

• In this example to propagate an error, the error 
needs to be propagated through multiple paths 
simultaneously. 
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Schneider’s Counterexample
Try single path 2-6-8
• Excitation: D at 2: b,c=0,0
• Forward trace: 

– D at 6: d=0
– D at 8: 4,5,7=0,0,0

• Implication:
– Since b=d=0, 3=1, 7=0

• Line Justification (backward 
trace):  
– For 5=0: a=1
– Since abc=100,  1=0, 4=1 (!) 
– Inconsistency.

• Single path propagation fails.• Multiple path propagation thru 5 and 6 works!   
• b,c=0,0;   a,d=0,0  Thus (0,0,0,0) is a test.



Using Logisim

• Demonstration of Logisim
• Minimization
• Fault insertion
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D-Algorithm

• Extension of single-path propagation
• Applicable for any type of elements (inc. gates)
Info used:
• Each normal element: 

– What other elements it is connected to 
– Its functional description
– How to drive a D or`D through it

• Faulty element: 
– how to get a D or`D at its output
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D-Algorithm: To find test for a given fault

• Excitation: Get  D or`D at a faulty element output
– Do implication of the 0/1 values chosen*.

• D-drive: move D-frontier forward
– Implication*
– Repeat until a D or`D at one output*

• Line justification
– Justify all specified outputs of elements by having 

suitable inputs*
• * Backtrack to last point a choice existed

The ugly part

This is a compact description of the algorithm. 
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D-Algo: example: Part 1

• Fault: NOR output s-a-1

• Excitation: 1,2 = 1,0 gets a`D at 5

• Propagation to 9: through 7 or 8? (Choice)

•Try 5-8-9 first
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D-Algorithm Ex (part 2)

Step 1 2 3 4 5 6 7 8 9

Initial 1 0 `D

5®8 1 0 `D 0 `D

8®9 1 0 `D 0 1 `D `D

4¬7 1 0 0 `D 0 1 `D `D

3¬6 1 0 1 0 `D 0 1 `D `D

1,2¬4 f 0 1 0 `D 0 1 `D `D

Try: path 5-8-9

Inconsistency!
Need to 

Backtrack

D-drive

Justifi-

cation

Table gives step-by-step values, until an

inconsistency is observed
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D-Algorithm Ex (3)

1 2 3 4 5 6 7 8 9

1 0 `D

5®7 1 0 1 `D D

7®9 1 0 1 `D D 1 D

6¬8 1 0 1 `D 1 D 1 D

3¬6 1 0 0 1 `D 1 D 1 D

Try now: 5-7-9

Yes!

D-drive

Justifi-

cation
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Improved Algorithms

• While the D-algorithm is basic and historically 
important, it is not efficient.

• Several efficient test generation algorithms have 
been developed and compared using large 
example circuits.
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Combinational ATPG Algorithms

• Automatic Test Pattern Generation (ATPG) algorithms: 
searches are based on heuristics that generally work faster
– PODEM 1981: x7 speedup relative to D-algorithm
– FAN 1983: x23
– SOCRATES 1988: x1574
– EST87651991: x8765
– Tafertshofer 1997: x25057

• Test generation is an “np-complete problem”. No algorithm is 
known which will solve it in polynomial time (i.e. in nr time,

n=number  of elements, r is some finite constant)
• It has been suggested that often computation time needed is of 

the order of n3. Prabhu Goel – PODEM, Verilog
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Fault Collapsing (1)

• Fault Collapsing: reducing the number of faults 
to be considered.

• Collapsing can be done using these
– Equivalence property
– Dominance property

• Equivalence: Faults a and b are equivalent if fa= 
fb, i.e. if the two always generate the same response.

Stuck-at-0 at these two nodes are equivalent  
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Fault Collapsing (2)

• Equivalence: Faults a and b are equivalent if fa= 
fb. Then a and b affect the output in exactly the 
same way.

All s-a-0 equivalent

All s-a-1 equivalent

•For an N-input gate only n+2 faults need to be 
considered 

•Ex: NAND gate: we only need to consider

•Any input s-a-0 or output s-a-1 (count as 1)
•One input s-a-1 (total n such inputs)

•Output s-a-0 (1)

•Termed Equivalence fault collapsing

“Equivalence partitioning” 
in software testing
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Fault Collapsing (2)

• Dominance: A fault a dominates fault 
b if TbÌTa.

• For detection only fault b needs to be 
considered. For location, both need 
to be considered separately (if 
distinguishable)

Ta

Tb

a s-a-1b s-a-1
x

x

Ta= 0xx, x0x, xx0
Tb= 011

\TbÌTa

(0,1,1) will test for both a and b. No 
need to use other tests if only detection 
is needed.

!

¾¾¾¾¾
Example: 

Detection only attempts to identify 

that the unit under test is faulty.
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Check-points (1)

Here is a nice theorem:
• Theorem: In a fan-out free combinational circuit, any 

test set that detects all stuck faults on primary inputs 
will detect all stuck faults in the network.

• Note that the primary inputs are inputs to the unit-
under-test coming from outside.

• If there is fan-out? Here is a nice extension.

SSFs=single stuck faults
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Fault Collapsing: Check-points (2)

• Theorem: In a combinational circuit, any test set that 
detects all stuck faults on 
– all primary inputs and 
– All branches of fanout points
will detect all stuck faults in the network.

These are appropriately 
called Checkpoints

Incidentally a check-point 
concept is also applicable for 

software testing
H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “ 
Automatic Test Generation using Checkpoint 
Encoding and Antirandom Testing” Int. Symp. on 
Software Reliability Engineering, 1997, pp. 84-95.
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Checkpoints: 
Example

• 12 nodes,  two faults at each node (s-a-0, s-a-1)   
thus 24 faults before collapsing.

• Checkpoints are: 
– Primary inputs: a,b,c,d, e
– All branches of fan-out points: g,h 
– Faults at checkpoints 7x2=14 faults

• Thus only 14 out of 24 need to be considered.
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Why Test Set Reduction works

Generally one pattern tests for several faults, as
• On a sensitized path a s-a-0 (s-a-1) on all nodes 

with D (`D) will be detected.

Sensitized path: a-e-g
(1100) will detect a s-a-0, 
e s-a-1 and g s-a-0

¾¾¾¾¾
Example: 
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Why Test Set Reduction works

Generally one pattern tests for several faults, because
• With a given vector, several nodes will be critical.

(1100) will detect a s-a-0, b s-a-0, 
e s-a-1 and g s-a-0

Example:   Here the critical nodes are marked with a c. A node is critical 
only under a specific input vector, here (1,1,0,0).

A node is critical if a change in its logic value will change the output. 
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Test Set Reduction

• In test set reduction, object is to minimize the 
number of tests without losing fault detection 
capability.

• One approach, shown in the next slide to compile 
lists of faults detected by each vector.

• The other approach uses simulation. In a test set 
a test is dropped if it does not test for any new 
faults.
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Test Set Compaction

• Minimize the number of patterns.
¾¾¾¾¾
Example: 

a

b
c

a-0 a-1 b-0 b-1 c-0 c-1
00 Ö

01 Ö Ö

10 Ö Ö

11 Ö Ö Ö

M
inim

um
 set

In practice heuristics are used, complete optimization is not needed.

faults
tests

Answer:  01, 10,11 will test for all the faults.  Thus no need to apply 00. 
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Coverage & Simulation
• Coverage: fraction of all possible faults covered by a 

test set. 
• Simulation can be used to determine coverage.
• Complete (100%) coverage is not feasible for very 

complex systems.

Obtain coverage by simulation

Obtain a test set

Enough?

Get more tests

Done

Undetectable faults may or may not be counted.
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Fault distinction

• Fault distinction attempts to identify the specific 
fault that is present. The problem goes well beyond 
fault detection.

• In the next slide, the fault distinction problem is 
illustrated. In the adaptive approach, the results 
obtained in the past are exploited to cut down on 
tests needed. Test t1 tests for faults f1 and f2, but 
does not test for fault f3. Assuming there is one (and 
only one) fault, if there is no error when t1 is applied, 
fault f3 must be the one present.



January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

39

Fault 
distinction

• Preset test set: no decision making 
during testing

• Adaptive: successive narrowing down

Problem: There is a fault. Is it f1, f2 or f3? 

Fault Test t1 Test t2 Test t3

f1 tests doesn’t tests

f2 tests tests doesn’t

f3 doesn’t tests tests

Assuming equal probability 1/3 for each fault, average number  of tests 

to identify the fault= 2x 1/3+2x1/3+1 x1/3 = 1.7  vectors!
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Guided probe for fault location

If you can probe inside, the fault distinction problem 
becomes easier. 
• Apply inputs that cause an error. Start probing:

– The error is not present at node A 
– but exists at a downstream node B, 
– Implies that the fault is somewhere between A and B.
– Keep changing A and B until they correspond to the 

input and output of a single “element”
• Replace or fix the suspected element
• Guided probe approach is applicable to both 

hardware and software.
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Test Generation: Summary

• Boolean difference

• D (normally 1), excitation and propagation
• D-algorithm: backtrack if needed
• Equivalence/dominance collapsing, checkpoints
• Test set compaction
• Fault coverage and simulation
• Redundancy: undesirable during testing
• Fault distinction: preset vs. adaptive

)1()0( ii
ii

i ff
dx
df

dx
dfxT Å==



January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

42

References
• Supporting reading: Design for Testability in Digital Integrated circuits,  Bob 

Strunz, Colin Flanagan, Tim Hall 
http://www.cs.colostate.edu/~cs530/digital_testing.pdf

• "Fault tolerant and Fault Testable Digital Design" (Prentice hall International), 
Parag Lala. 

• Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI 
Circuits, by Michael L. Bushnell, Vishwani D. Agrawal, Springer 2000. 

• Test Pattern Generation And Test Application Time Reduction Algorithms For 
VLSI Circuits, Ilker Hamzaoglu, Dissertation (Introductory chapters only)

• I. Hamzaoglu and J. H. Patel, "Test Set Compaction Algorithms for 
Combinational Circuits",  Proc. of the Int. Conf. on Computer-Aided Design, 
November 1998.

http://www.cs.colostate.edu/~cs530/digital_testing.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.6644&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=856980


January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

43

FAQ
• Can a testable fault become untestable in presence of 

another fault?


