
January 28, 2021 1

Fault Tolerant Computing
CS 530

Test Generation

Yashwant K. Malaiya
Colorado State University

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

2

Test Generation: Combinational

•Algebraic: Boolean difference
•Structural: D-notation
•Sensitized path, single-path propagation
•D-algorithm
•Fault-collapsing, Test set minimization

Testing for bugs

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

3

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

4

Testing

• We assume that tests are applied at the inputs
and the response is observed at the outputs of
the unit-under-test.

• A test detects the presence of a fault(s), if the
output is different from the expected output.

• Two test approaches:
– Functional (or Black-box): uses only the functional

description of the unit, not its structure to obtain tests.
– Structural testing: uses the structural information to

generate tests. Requires more effort, but can be more
thorough.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

5

Random Testing

• Random testing is a form of functional testing. In
random testing, each test is chosen such that it
does not depend on past tests.

• In actual practice, the “random” tests are
generated using Pseudo-random algorithms that
approximate randomness.

• As we will discuss later, random testing can be
effective for moderate degree of testing, but not
for thorough testing.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

6

Test coverage

• A single test typically covers (i.e. tests) for
several potential faults.

• The coverage obtained by a test-set can be
obtained using fault simulators for hardware.

• The test coverage achieved by a test-set is given
by ratio:

Number of faults covered
coverage = -------------------------------

Total number of possible faults
• By convention, coverage is evaluated for stuck-at 0/1 faults

in hardware, often given in percentage.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

7

Testing for Individual Faults

• First we consider structural testing for individual
faults (test generation problem).

• We then consider reducing the number of faults
to be considered (fault collapsing problem).

• Next we consider reducing the number of tests
that need to be applied (test-set compaction
problem).

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

8

Test generation: Some Basics (1)

• Approaches:
– Symbolic
– Based on heuristics

• Needed:
– Fault excitation: triggering the fault to create error
– Error propagation: propagating error to the output

• Notation:
– normal function f,
– faulty fa with fault a

• Vector â=(a1, a2, ..an) is a test if f(â)¹fa(â)
• All tests are contained in expression T = fÅfa

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

9

Test generation: Some Basics (2)
• All tests are contained in T, where T = fÅfa

T = A’B (01) is a test. The only test.

i.e. T is the set of vectors for which normal and faulty outputs are different.

fÅfa is 1 for combinations for

which Karnaugh maps of f
and fa are different.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

10

Boolean Difference Method
Theorem: Assume input xi has fault a which is s-a-0. Then
set of tests is given by

• Note that Boolean Difference df/dxi represents
conditions for which output is susceptible to
input xi.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

11

Boolean difference (2)

• Proof:
Using Shanon’s expansion theorem which states that
f(xi)= xi fi(0)+ xi fi(1)
Note that fa(X)=fi(0)

))0()1((
)0()1()0()1(
)0())1()0((

)()(

iii

iiiiii

iiiii

ffx
ffxffx
ffxfx

XfXfT

Å=
+=

Å+=
Å= a What about

xi s-a-1?

Answer: use `xi

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

12

Boolean difference (3)
• Proof: Details
() ()
((0) (1)) (0)

((0) (1)). (0) ((0) (1)). (0)

(1) (0) [((0))((1)] (0)

(1) (0) [(1) (0) (0) (1)] (0)

(1) (0) (1) (

i i i i i

i i i i i i i i i i

i i i i i i i i

i i i i i i i i i i i i

i i i i i i

T f X f X
x f x f f

x f x f f x f x f f

x f f x f x f f

x f f x x x f x f f f f

x f f x f f

a= Å
= + Å

= + + +

= + + +

= + + + +

= + 0)
((1) (0))i i ix f f= Å

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

13

Boolean Difference: Example

df/dB = f(A,0,C) Å f(A,1,C)
=CÅA =AC+AC

Hence

T =B (AC+AC) = ABC+ABC
=(100,001)

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

14

Boolean Difference: Internal Nodes

• Consider an internal node h=h(X) s-a-1. Express the original
function f(X) as fh(X,h). Tests for h s-a-1 are given by
!𝒉(X) dfh(X,h)/dh.

f(A,B,C)=AB+BC h(A,B)=AB

fh(B,C,h)=h+BC

dfh/dh = fh(0,B,C)Åfh(1,B,C) = (BC) Å1
= BC =B+C

T = h dfh/dh = (AB)(B+C) = (A+B)(B+C) = AB+AC+BC

=010, 011, 000, 100 (four vectors!)

00 01 11 10

0 1 0 1 1
1 1 0 0 0

BC
A

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

15

D-Notation
• Notation: Line has value D if it is 1 normally and 0

in presence of the fault. Line has value `D if it is 0
normally and 1 in presence of the fault.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

16

Single Path Propagation
• Excitation:

– h=0 normally. Need
A,B=0,0

• Propagation:
– Other AND input:1
– Other OR input: 0

• Justification:
– C=1 already. E=x (don’t

care)
• Test is (0,0,1,x)

Write on diagram

Single path propagation attempts to

propagate error using a single path
from the fault site to an output.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

17

Single Path Propagation may fail

• Single Path Propagation may fail in some cases
even when a test exists.

• In the example in the next slide, an attempt to
propagate an error using a strictly single path
fails.

• In this example to propagate an error, the error
needs to be propagated through multiple paths
simultaneously.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

18

Schneider’s Counterexample
Try single path 2-6-8
• Excitation: D at 2: b,c=0,0
• Forward trace:

– D at 6: d=0
– D at 8: 4,5,7=0,0,0

• Implication:
– Since b=d=0, 3=1, 7=0

• Line Justification (backward
trace):
– For 5=0: a=1
– Since abc=100, 1=0, 4=1 (!)
– Inconsistency.

• Single path propagation fails.• Multiple path propagation thru 5 and 6 works!
• b,c=0,0; a,d=0,0 Thus (0,0,0,0) is a test.

Using Logisim

• Demonstration of Logisim
• Minimization
• Fault insertion

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

19

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

20

D-Algorithm

• Extension of single-path propagation
• Applicable for any type of elements (inc. gates)
Info used:
• Each normal element:

– What other elements it is connected to
– Its functional description
– How to drive a D or`D through it

• Faulty element:
– how to get a D or`D at its output

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

21

D-Algorithm: To find test for a given fault

• Excitation: Get D or`D at a faulty element output
– Do implication of the 0/1 values chosen*.

• D-drive: move D-frontier forward
– Implication*
– Repeat until a D or`D at one output*

• Line justification
– Justify all specified outputs of elements by having

suitable inputs*
• * Backtrack to last point a choice existed

The ugly part

This is a compact description of the algorithm.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

22

D-Algo: example: Part 1

• Fault: NOR output s-a-1

• Excitation: 1,2 = 1,0 gets a`D at 5

• Propagation to 9: through 7 or 8? (Choice)

•Try 5-8-9 first

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

23

D-Algorithm Ex (part 2)

Step 1 2 3 4 5 6 7 8 9

Initial 1 0 `D

5®8 1 0 `D 0 `D

8®9 1 0 `D 0 1 `D `D

4¬7 1 0 0 `D 0 1 `D `D

3¬6 1 0 1 0 `D 0 1 `D `D

1,2¬4 f 0 1 0 `D 0 1 `D `D

Try: path 5-8-9

Inconsistency!
Need to

Backtrack

D-drive

Justifi-

cation

Table gives step-by-step values, until an

inconsistency is observed

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

24

D-Algorithm Ex (3)

1 2 3 4 5 6 7 8 9

1 0 `D

5®7 1 0 1 `D D

7®9 1 0 1 `D D 1 D

6¬8 1 0 1 `D 1 D 1 D

3¬6 1 0 0 1 `D 1 D 1 D

Try now: 5-7-9

Yes!

D-drive

Justifi-

cation

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

25

Improved Algorithms

• While the D-algorithm is basic and historically
important, it is not efficient.

• Several efficient test generation algorithms have
been developed and compared using large
example circuits.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

26

Combinational ATPG Algorithms

• Automatic Test Pattern Generation (ATPG) algorithms:
searches are based on heuristics that generally work faster
– PODEM 1981: x7 speedup relative to D-algorithm
– FAN 1983: x23
– SOCRATES 1988: x1574
– EST87651991: x8765
– Tafertshofer 1997: x25057

• Test generation is an “np-complete problem”. No algorithm is
known which will solve it in polynomial time (i.e. in nr time,

n=number of elements, r is some finite constant)
• It has been suggested that often computation time needed is of

the order of n3. Prabhu Goel – PODEM, Verilog

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

27

Fault Collapsing (1)

• Fault Collapsing: reducing the number of faults
to be considered.

• Collapsing can be done using these
– Equivalence property
– Dominance property

• Equivalence: Faults a and b are equivalent if fa=
fb, i.e. if the two always generate the same response.

Stuck-at-0 at these two nodes are equivalent

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

28

Fault Collapsing (2)

• Equivalence: Faults a and b are equivalent if fa=
fb. Then a and b affect the output in exactly the
same way.

All s-a-0 equivalent

All s-a-1 equivalent

•For an N-input gate only n+2 faults need to be
considered

•Ex: NAND gate: we only need to consider

•Any input s-a-0 or output s-a-1 (count as 1)
•One input s-a-1 (total n such inputs)

•Output s-a-0 (1)

•Termed Equivalence fault collapsing

“Equivalence partitioning”
in software testing

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

29

Fault Collapsing (2)

• Dominance: A fault a dominates fault
b if TbÌTa.

• For detection only fault b needs to be
considered. For location, both need
to be considered separately (if
distinguishable)

Ta

Tb

a s-a-1b s-a-1
x

x

Ta= 0xx, x0x, xx0
Tb= 011

\TbÌTa

(0,1,1) will test for both a and b. No
need to use other tests if only detection
is needed.

!

¾¾¾¾¾
Example:

Detection only attempts to identify

that the unit under test is faulty.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

30

Check-points (1)

Here is a nice theorem:
• Theorem: In a fan-out free combinational circuit, any

test set that detects all stuck faults on primary inputs
will detect all stuck faults in the network.

• Note that the primary inputs are inputs to the unit-
under-test coming from outside.

• If there is fan-out? Here is a nice extension.

SSFs=single stuck faults

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

31

Fault Collapsing: Check-points (2)

• Theorem: In a combinational circuit, any test set that
detects all stuck faults on
– all primary inputs and
– All branches of fanout points
will detect all stuck faults in the network.

These are appropriately
called Checkpoints

Incidentally a check-point
concept is also applicable for

software testing
H. Yin, Z. Lebne-Dengel and Y. K. Malaiya, “
Automatic Test Generation using Checkpoint
Encoding and Antirandom Testing” Int. Symp. on
Software Reliability Engineering, 1997, pp. 84-95.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

32

Checkpoints:
Example

• 12 nodes, two faults at each node (s-a-0, s-a-1)
thus 24 faults before collapsing.

• Checkpoints are:
– Primary inputs: a,b,c,d, e
– All branches of fan-out points: g,h
– Faults at checkpoints 7x2=14 faults

• Thus only 14 out of 24 need to be considered.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

33

Why Test Set Reduction works

Generally one pattern tests for several faults, as
• On a sensitized path a s-a-0 (s-a-1) on all nodes

with D (`D) will be detected.

Sensitized path: a-e-g
(1100) will detect a s-a-0,
e s-a-1 and g s-a-0

¾¾¾¾¾
Example:

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

34

Why Test Set Reduction works

Generally one pattern tests for several faults, because
• With a given vector, several nodes will be critical.

(1100) will detect a s-a-0, b s-a-0,
e s-a-1 and g s-a-0

Example: Here the critical nodes are marked with a c. A node is critical
only under a specific input vector, here (1,1,0,0).

A node is critical if a change in its logic value will change the output.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

35

Test Set Reduction

• In test set reduction, object is to minimize the
number of tests without losing fault detection
capability.

• One approach, shown in the next slide to compile
lists of faults detected by each vector.

• The other approach uses simulation. In a test set
a test is dropped if it does not test for any new
faults.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

36

Test Set Compaction

• Minimize the number of patterns.
¾¾¾¾¾
Example:

a

b
c

a-0 a-1 b-0 b-1 c-0 c-1
00 Ö

01 Ö Ö

10 Ö Ö

11 Ö Ö Ö

M
inim

um
 set

In practice heuristics are used, complete optimization is not needed.

faults
tests

Answer: 01, 10,11 will test for all the faults. Thus no need to apply 00.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

37

Coverage & Simulation
• Coverage: fraction of all possible faults covered by a

test set.
• Simulation can be used to determine coverage.
• Complete (100%) coverage is not feasible for very

complex systems.

Obtain coverage by simulation

Obtain a test set

Enough?

Get more tests

Done

Undetectable faults may or may not be counted.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

38

Fault distinction

• Fault distinction attempts to identify the specific
fault that is present. The problem goes well beyond
fault detection.

• In the next slide, the fault distinction problem is
illustrated. In the adaptive approach, the results
obtained in the past are exploited to cut down on
tests needed. Test t1 tests for faults f1 and f2, but
does not test for fault f3. Assuming there is one (and
only one) fault, if there is no error when t1 is applied,
fault f3 must be the one present.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

39

Fault
distinction

• Preset test set: no decision making
during testing

• Adaptive: successive narrowing down

Problem: There is a fault. Is it f1, f2 or f3?

Fault Test t1 Test t2 Test t3

f1 tests doesn’t tests

f2 tests tests doesn’t

f3 doesn’t tests tests

Assuming equal probability 1/3 for each fault, average number of tests

to identify the fault= 2x 1/3+2x1/3+1 x1/3 = 1.7 vectors!

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

40

Guided probe for fault location

If you can probe inside, the fault distinction problem
becomes easier.
• Apply inputs that cause an error. Start probing:

– The error is not present at node A
– but exists at a downstream node B,
– Implies that the fault is somewhere between A and B.
– Keep changing A and B until they correspond to the

input and output of a single “element”
• Replace or fix the suspected element
• Guided probe approach is applicable to both

hardware and software.

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

41

Test Generation: Summary

• Boolean difference

• D (normally 1), excitation and propagation
• D-algorithm: backtrack if needed
• Equivalence/dominance collapsing, checkpoints
• Test set compaction
• Fault coverage and simulation
• Redundancy: undesirable during testing
• Fault distinction: preset vs. adaptive

)1()0(ii
ii

i ff
dx
df

dx
dfxT Å==

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

42

References
• Supporting reading: Design for Testability in Digital Integrated circuits, Bob

Strunz, Colin Flanagan, Tim Hall
http://www.cs.colostate.edu/~cs530/digital_testing.pdf

• "Fault tolerant and Fault Testable Digital Design" (Prentice hall International),
Parag Lala.

• Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI
Circuits, by Michael L. Bushnell, Vishwani D. Agrawal, Springer 2000.

• Test Pattern Generation And Test Application Time Reduction Algorithms For
VLSI Circuits, Ilker Hamzaoglu, Dissertation (Introductory chapters only)

• I. Hamzaoglu and J. H. Patel, "Test Set Compaction Algorithms for
Combinational Circuits", Proc. of the Int. Conf. on Computer-Aided Design,
November 1998.

http://www.cs.colostate.edu/~cs530/digital_testing.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.6644&rep=rep1&type=pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=856980

January 28, 2021 Fault Tolerant Computing
©Y.K. Malaiya

43

FAQ
• Can a testable fault become untestable in presence of

another fault?

