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Probabilistic Methods

« Much of this may be a review of probability and
statistics you have taken elsewhere.

- We cannot predict exactly when something will fail,
but we can calculate the probability of a failure, and

what can be done to reduce that.

- This is similar to what insurance industry does: they
may not know when a person will die, but they can
compute life-expectancy of someone who is say, 45
years old, and maintains an ideal weight.
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Probabilistic Methods: Overview

- We can have concrete numbers even in presence of uncertainty.
Topics:
+ Probability - ‘
= Disjoint events e /
« Statistical dependence
+ Random variables and distributions
= Discrete distributions: Binomial, Poisson
= Continuous distributions: Gaussian, Exponential
- Stochastic processes
= Markov process
= Poisson process
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Basics

Probability of an event A

Ppﬁ:%-

if A occurs n times among N equally likely outcomes.
* Probability is a number between 0 and 1.
- Ex: Roll of a die

P@&ﬂ:%:Oﬁ

- If more information is available, probability of the same event
changes. If we know die is loaded, perhaps

P{odd}=0.6 is possible.
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Basics Concepts

« Prob. Of union of two events:

P{AUB} = P{4} + P{B\ — P{AN B}
- Ex: Roll of a die
P{outcome even |Joutcome < 3}
= P{even}+ P{< 3} — P{even()< 3}
3 3 1.5

6666

- If A and B are disjoint, i.e. if 4B = p(i.e. empty set),
P{AUB} = P{A4} + P{B}

P{A}=1-P{A}
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Conditional Probability

o Conditional probabi | ity P{AIB} is the probability of A,
given we know B has happened.
P{A(\B
P{A|B} = t4l }forP{B} >0
P{B}

- If A and B are independent, P{AIB}= P{A}. Then
P{A(\ B} = P{A}P{B}
- Example: A toss of a coin is independent of the
outcome of the previous toss.
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Conditional Probability

- If A can be divided into disjoint A;, i=1,..,n, then

P{B}=) P{B|4}P{4}

- Example: A chip is made by two factories A and B. One
percent of chips from A and 0.5% from B are found defective. A
produces 90% of the chips. What is the probability a randomly
encountered chip will be defective?

- P{a chip is defective} = (1/100)x0.9 + (0.5/100)x0. 1
=0.0095 i.e., 0.95%
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Bayes’ Rule

P{AIB} is the probability of A,

ConditiOna| prObabi I ity given we know B has happened.

P{B} = P{BIA}P{A} + P{BI-A}P{-A}

_P{ANB
P{A|B} = PIB) forP{B} >0
Bayes’ Rule
y P{A|B} = PABIA}PLA} for P{B}>0

P{B}
Example: A drug test produces 99% true positive and 99% true

negative results. 0.5% are drug users. If a person tests positive, what is
the probability he is a drug user?

P{P|DU}YP{DU}

P{DU | P} =
P{PIDUYP{DU} + P{P | nDU)P{nDU}
= 33.3%
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Bayes’ Rule: Posterior Probability

- Implications of Bayes’ rule:

P{B|A}P{A}
P{B}
P{A} represents prior probability, when we did not know

about B.

P{AIB} represents posterior probability, after we know B.

P{A|B} = for P{B}>0

Tl . . .
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Bayes’ Rule: Example

« OJ Simpson Trial: There was a prior belief of guilt. There was a blood
match. What is the updated belief.

« Given Information on Blood Test (T+/T-)

— Sensitivity: P(T+ | Guilty)=1

— Specificity: P(T- | Innocent)=.9957 = P(T+| Inn)=.0043
« Suppose you have a prior belief of guilt: P(G)=p*

« What is “posterior” probability of guilt after seeing evidence that blood
matches: P(G | T+)?

P(T+)=P(T"G)+P(T"1)=P(G)P(T" |G)+P()P(T" | 1) =
=p*()+{- p*)(.0043)

G 1= PTG _ PGP |G) p*() Pt
P(T™) P(T) p*(1)+ (1= p*)(.0043) .9957 p*+.0043
B.Forst (1996). “Evidence, Probabilities and Legal Standards for Determination of Guilt: Beyond the OJ Trial”,
pp. 22-28
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Bayes’ Rule: Example
Prior Probability of Guilt : P(G)=.10=

10(1) .10
10(1) +.90(.0043)  .10387

P(G|T") = — 9627

Even if the prior probability of guilt
is low, positive test outcome

makes it almost certain.
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Confusion Matrix

There are no perfect tests. Applicable to -

diseases, cyber intrusions etc.
. . . Test +ve TP FP
Binary classification problem

Test —ve FN TN
Sensitivity = TP/(TP+FN)
— If the person has the disease, what is the prob test is positive?
Specificity = TN/(FP+TN)
— If the person does not have the disease, what is the prob test is indeed negative?
— FPR=1-TPR, FNR =1-TNR
Precision = TP/(TP+FP)
— If the result is positive, what is the prob it is true?
Several other measures used.
— Ex: TP=100,FP =10, FN =5, TN =50
— Precision = 100/(100+10) = 0.901
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Example: Intrusion Detection

If an ID scheme is more sensitive, it will increase false
positive rates.

Ex Car alarm

Different ROC curves

0.8 -
os} Perfect .
IDS

Detection rate

xxxxxxxxx

04 05 06 (
False alarm rate

Figure 2-5. ROC Curves for different intrusion detection techniques

- True Positive rate (sensitivity) vs False Positive Rate

Area under the ROC receiver operating characteristic CUIFVE isa gOOd
measure of the ID scheme.

. Iptrqgioq Detection A Survey, Lazarevic, Kumar,
Qo 0@ srivastava, 2008
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X is a random variable that is the height of a randomly chosen student

Random Variables

A random variable (r.v.) may take a specific random value at a time. For example

x is one specific value (say 5°9”)
A random variable is defined by its density function.
A r.v. can be continuous or discrete

continuous discrete
ntion | f()dx | P{x< X <x+dx} p(x,)
“Cumulative P tmax
asvbuion | F () [ £ (xyex S p(x)
(cdf) : i=I min
Expected x)rcntgf [ max
ahewen) | E(Y) | [xf(de | Y xp(x)

xmin i=imin
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Distributions, Binomial Dist.

xmax imax

. Note that [fdc=1"3 p(x)=1

- Major distributions:

= Discrete: Bionomial, Poisson
= Continuous: Gaussian, expomential

- Binomial distribution: outcome is either success or failure
= Prob. of rsuccesses in n trials, prob. of one success being p

f(r)= " p d-p)™" for r=0,...,n
v

!
incidentally (n):”(j — -
r

" H(n—r)!
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Distributions: Poisson

- Poisson: also a discrete distribution, A is a parameter.

fy=2C

x!

- Example: p=occurrence rate of something.
= Probability of r occurrences in time t is given by

—_ t‘ -
( )7, l‘)” e M Often applied to fault

f (I" ) — : arrivals in a system
r.
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Distributions: Gaussiansoeo

Laplace discovered it before
- Continuous. Also termed Normal Gaussin 1774 AD!

(called Laplacian in France!1774 Ap)

2
1 _(x ,uz) Bell-shaped curve
f()= e
2 0.08 —
2%0 0.07 —
0.06 —
—o0 < x £ 4 2 0054
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Normal distribution (2)

- Tables for normal distribution are available, often
in terms of standardized variable z=(x- n)/c.

* (p-o, u+o) includes 68.3% of the area under the
curve.

* (u-3o, u+30) includes 99.7% of the area under the
curve.

« Central Limit Theorem: Sum of a large number of
independent random variables tends to have a normal

distribution. The reason why normal distribution is applicable

in many cases
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German 10 Mark bill with Gauss
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Exponential & Weibull Dist.

Exponential Distribution: Is a A

continuous distribution.
= Density function @
f(t) =\ et O<t<wo

Example:

A: exit or failure rate. X
Pr{exit the good state during (t, t+dt)}

=e M) dt g
The time T spent in good state has 0
an exponential distribution

ot

Weibull Distribution: is a 2- TS
parameter generalization of

exponential distribution. Used when

better fit is needed, but is more

complex.

100

time

150
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Variance & Covariance

- Variance: a measure of spread
- Var{X} = E[X-p,]
- Standard deviation = (Var{x})12
« o = standard deviation (usually for normal dist)

- Covariance: a measure of statistical dependence
= Cov{X,Y} = E[(X-p,)(Y-py)]
= Correlation coefficient: normalized
pxy = CoV{X,Y}/ o, G,
Note that 0O<lp,,I<1

P P .
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Stochastic Processes

- Stochastic process: that takes random values at
different times.

= Can be continuous time or discrete time
- Markov process: discrete-state, continuous time

process. Transition probability from state i to state j
depends only on state i (It is memory-less)

- Markov chain: discrete-state, discrete time process.

- Poisson process: is a Markov counting process
N(t), t>0, such that N(t) is the number of arrivals up
to time t.

A ks .
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FAQ

- What kind of faults are tested by design for
testability approaches? Stuck-at or delay?
- Testing for stuck-at faults may detect some delay faults.
= There is a DFT for delay faults.

- Why we need probability distributions?

« Failures are often considered probabilistically. For
proper analysis we need the appropriate distributions of
the random variables involved.

C-C. Liaw, S. Y. Su, and Y. K. Malaiya. "Test generation for delay faults using stuck-at-fault test set."
Proc. of International Test Conf. 1980, pp. 167-175

Y.K. Malaiya and R. Narayanawamy, Modeling and testing for timing faults in synchronous sequential
circuits, IEEE Design and Test, pp. 62-74 (Nov. 1984)
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Poisson Process: properties

- Poisson process: A Markov counting process N(t),
t > 0, N(t) is the number of arrivals up to time t.

- Properties of a Poisson process:
- N(0)=0
P{an arrival in time At} = AAt
- No simultaneous arrivals

- We will next see an important example. Assuming
that arrivals are occurring at rate A, we will calculate
probability of n arrivals in time t.

P P .
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Poisson process: analysis

- A process is in state |, if | arrivals have occurred.
- Pi(t) is the probability the process is in state i.

N A N A
- In state i, probability is flowing in from state i-1, and is

flowing out to state i+1, in both cases governed by the rate A.
Thus

I arrivals

dP.(t
C}( ) = AP+ AP() n=0l,.
4
We’'ll solve it first for Py(t),
wtp\_i‘:a'\._@ February 9, 2021 Fault Tolerant Computing then for P1 (t), then naa
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Poisson process: Solution for P,(t)

SroNeoy

i arrivals
P, = P{process in state 0} Solution :
B(+AN=BOI-iar]  I(BE)=—4+C

_At
Rt+A)-F (1) _ AP (1) P()=C,e
Al Since B(0)=1,C, =1,

dlf}f(t) = AL R(t)=e*
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Poisson Process: General solution

We need to solve P (¢)
dt

=—AP(t)+ AP_(t) n=0,,.

Using the expression for Py(t), we can solve it for P,(t).

Solving recursively,we get

P()_(/it)

n = 0919-- Which we know is

Poisson distribution!
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Poisson Process: Time between
Two Events

Here we’ll show that the time to next arrival is exponentially distributed.

.th - - -
ith arrival i+1th arrival

P{t
Thus the cumulative distribution function (cdf) is given by
F(t)=P{0<T<ti=1-e"

Since the density function is derivative of cdf,

>t} = P{no arrival in (t,,t, +t)} =e™*'

i+1

differentiating both sides, we get

f(t)=1e™ Exponential distribution
0o ’Cpi"’a’d’@) February 9, 2021 i
e ebruary 9, Fault Tolerant Computin
%&E OY K. MaIl)aiya 8

LLIVCISICN



