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Probabilistic Methods

• Much of this may be a review of probability and 
statistics you have taken elsewhere.

• We cannot predict exactly when something will fail, 
but we can calculate the probability of a failure, and 
what can be done to reduce that.

• This is similar to what insurance industry does: they 
may not know when a person will die, but they can 
compute life-expectancy of someone who is say, 45 
years old, and maintains an ideal weight.
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Probabilistic Methods: Overview
• We can have concrete numbers even in presence of uncertainty.
Topics:
• Probability

§ Disjoint events
§ Statistical dependence

• Random variables and distributions
§ Discrete distributions: Binomial, Poisson
§ Continuous distributions: Gaussian, Exponential

• Stochastic processes
§ Markov process
§ Poisson process
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Basics
• Probability of an event A

if A occurs n times among N equally likely outcomes.
• Probability is a number between 0 and 1.
• Ex: Roll of a die

• If more information is available, probability of the same event 
changes. If we know die is loaded, perhaps
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Basics Concepts
• Prob. Of union of two events:

§

• Ex: Roll of a die

• If A and B are disjoint, i.e. if               (i.e. empty set),
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Conditional Probability

• Conditional probability

• If A and B are independent, P{A|B}= P{A}. Then 

• Example: A toss of a coin is independent of the 
outcome of the previous toss.
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P{A|B} is the probability of A, 

given we know B has happened.
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Conditional Probability

• If A can be divided into disjoint Ai, i=1,..,n, then

• Example: A chip is made by two factories A and B. One 
percent  of chips from A and 0.5% from B are found defective. A 
produces 90% of the chips. What is the probability a randomly 
encountered chip will be defective?

• P{a chip is defective} = (1/100)x0.9 + (0.5/100)x0.1
=0.0095  i.e., 0.95%
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Bayes’ Rule

• Conditional probability

• Bayes’ Rule

• Example: A drug test produces 99% true positive and 99% true 
negative results. 0.5% are drug users. If a person tests positive, what is 
the probability he is a drug user?
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P{A|B} is the probability of A, 

given we know B has happened.
P{B} = P{B|A}P{A} + P{B|¬A}P{¬A}

P{A | B} = P{B | A}P{A}
P{B}

for P{B}> 0

P{DU | P} = P{P |DU}P{DU}
P{P |DU}P{DU}+P{P | nDU)P{nDU}

= 33.3%
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Bayes’ Rule: Posterior Probability
• Implications of Bayes’ rule:

• P{A} represents prior probability, when we did not know 
about B. 

• P{A|B} represents posterior probability, after we know B.

Quantitative Security

P{A | B} = P{B | A}P{A}
P{B}

for P{B}> 0
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Bayes’ Rule: Example

Quantitative Security

• OJ Simpson Trial: There was a prior belief of guilt. There was a blood 
match. What is the updated belief.

• Given Information on Blood Test (T+/T-)
– Sensitivity: P(T+ | Guilty)=1
– Specificity: P(T- | Innocent)=.9957 Þ P(T+| Inn)=.0043

• Suppose you have a prior belief of guilt: P(G)=p*
• What is “posterior” probability of guilt after seeing evidence that blood 

matches: P(G | T+)?
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B.Forst (1996). “Evidence, Probabilities and Legal Standards for Determination of Guilt: Beyond the OJ Trial”,   
pp. 22-28



Bayes’ Rule: Example

Quantitative Security

9627.
10387.

10.
)0043(.90.)1(10.

)1(10.)|(

10.)(          :Guilt ofy ProbabilitPrior 

==
+

=

Þ=

+TGP

GP

P(G|T+) as function of P(G)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

P(G)

P(
G|

T+
)

Even if the prior probability of guilt

is low, positive test outcome
makes it almost certain.



Confusion Matrix
Disease + Disease -

Test +ve TP FP

Test –ve FN TN

Quantitative Security

• Sensitivity = TP/(TP+FN)      also TPR true pos rate
– If the person has the disease, what is the prob test is positive?

• Specificity = TN/(FP+TN)      also TNR true neg rate
– If the person does not have  the disease, what is the prob test is indeed negative?
– FPR = 1- TPR,  FNR = 1-TNR    

• Precision = TP/(TP+FP) PPV positive predictive value
– If the result is positive, what is the prob it is true?

• Several other measures used.
– Ex: TP= 100, FP = 10, FN = 5, TN = 50
– Precision = 100/(100+10) = 0.901

• There are no perfect tests. Applicable to 
diseases,  cyber intrusions etc.

• Binary classification problem



Example: Intrusion Detection

• If an ID scheme is more sensitive, it will increase false 
positive rates. 

• Ex Car alarm

• True Positive rate (sensitivity) vs False Positive Rate
• Area under the ROC receiver operating characteristic curve is a good 

measure of the ID scheme.

Quantitative Security
Intrusion Detection A Survey, Lazarevic, Kumar, 

Srivastava, 2008 
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Random Variables
• A random variable (r.v.) may take a specific random value at a time. For example

§ X is a random variable that is the height of a randomly chosen student
§ x is  one specific value (say 5’9”)

• A random variable is defined by its density function.
• A r.v. can be continuous or discrete
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Distributions, Binomial Dist.

• Note that

• Major distributions: 
§ Discrete: Bionomial, Poisson
§ Continuous: Gaussian, expomential

• Binomial distribution: outcome is either success or failure
§ Prob. of r successes in n trials, prob. of one success being p
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Distributions: Poisson

• Poisson: also a discrete distribution, l is a parameter.

• Example:   µ = occurrence rate of something.
§ Probability of r occurrences in time t is given by
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Often applied to fault 

arrivals in a system 
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Distributions: Gaussian1809 AD

• Continuous. Also termed Normal
(called Laplacian in France!1774 AD) 
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Normal distribution (2)

• Tables for normal distribution are available, often 
in terms of standardized variable z=(x- µ)/s.

• (µ-s, µ+s) includes 68.3% of the area under the 
curve.

• (µ-3s, µ+3s) includes 99.7% of the area under the 
curve.

• Central Limit Theorem: Sum of a large number of
independent random variables tends to have a normal 
distribution. The reason why normal distribution  is applicable 

in many cases
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German 10 Mark bill with Gauss 
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Exponential & Weibull Dist.
Exponential Distribution: is a 

continuous distribution.  
§ Density function

f(t) = l e- l t           0<t£¥
Example:
• l: exit or failure rate.
• Pr{exit the good state during (t, t+dt)}

= e- lt l dt
• The time T spent in good state has 

an exponential distribution
• Weibull Distribution: is a 2-

parameter generalization of 
exponential distribution. Used when 
better fit is needed, but is more 
complex. 
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Variance & Covariance

• Variance: a measure of spread
§ Var{X} = E[X-µx]2

§ Standard deviation = (Var{x})1/2

§ s = standard deviation (usually for normal dist)
• Covariance: a measure of statistical dependence

§ Cov{X,Y} = E[(X-µx)(Y-µy)]
§ Correlation coefficient: normalized
rxy = Cov{X,Y}/ sx sy

Note that 0<|rxy|<1 
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Stochastic Processes

• Stochastic process:  that takes random values at 
different times.
§ Can be continuous time or discrete time

• Markov process: discrete-state, continuous time 
process. Transition probability from state i to state j 
depends only on state i (It is memory-less)

• Markov chain: discrete-state, discrete time process.
• Poisson process: is a Markov counting process 

N(t),   t ³ 0, such that N(t) is the number of arrivals up 
to time t.



FAQ
• What kind of faults are tested by design for 

testability approaches?  Stuck-at or delay?
§ Testing for stuck-at faults may detect some delay faults.
§ There is a DFT for delay faults.

• Why we need probability distributions?
§ Failures are often considered probabilistically. For 

proper analysis we need the appropriate distributions of 
the random variables involved.

C-C. Liaw, S. Y. Su, and Y. K. Malaiya. "Test generation for delay faults using stuck-at-fault test set." 
Proc. of International Test Conf. 1980, pp. 167-175
Y.K. Malaiya and R. Narayanawamy, Modeling and testing for timing faults in synchronous sequential 
circuits, IEEE Design and Test, pp. 62-74 (Nov. 1984)
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Poisson Process: properties

• Poisson process: A Markov counting process N(t),   
t ³ 0, N(t) is the number of arrivals up to time t.

• Properties  of a Poisson process:
§ N(0) = 0
§ P{an arrival in time Dt} = lDt
§ No simultaneous arrivals

• We will next see an important example. Assuming 
that arrivals are occurring at rate l, we will calculate 
probability of n arrivals in time t.
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Poisson process: analysis
• A process is in state I, if I arrivals have occurred.
• Pi(t) is the probability the process is in state i.

• In state i, probability is flowing in from state i-1, and is 
flowing out to state i+1, in both cases governed by the rate l. 
Thus
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We’ll solve it first for P0(t),

then for P1(t), then …
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Poisson process: Solution for P0(t)
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Poisson Process: General solution
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Using the expression for  P0(t), we can solve it for P1(t).

Which we know is 

Poisson distribution!
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Poisson Process: Time between 
Two Events
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Here we’ll show that the time to next arrival is exponentially distributed.


