

Probabilistic Methods

- Much of this may be a review of probability and statistics you have taken elsewhere.
- We cannot predict exactly when something will fail, but we can calculate the probability of a failure, and what can be done to reduce that.
- This is similar to what insurance industry does: they may not know when a person will die, but they can compute life-expectancy of someone who is say, 45 years old, and maintains an ideal weight.

Probabilistic Methods: Overview

- We can have concrete numbers even in presence of uncertainty. Topics:
- Probability
- Disjoint events
- Statistical dependence

- Random variables and distributions
- Discrete distributions: Binomial, Poisson
- Continuous distributions: Gaussian, Exponential
- Stochastic processes
- Markov process
- Poisson process

Basics

- Probability of an event \mathbf{A}

$$
P\{A\}=\frac{n}{N}
$$

if \mathbf{A} occurs \mathbf{n} times among \mathbf{N} equally likely outcomes.

- Probability is a number between 0 and 1 .
- Ex: Roll of a die

$$
P\{o d d\}=\frac{3}{6}=0.5
$$

- If more information is available, probability of the same event changes. If we know die is loaded, perhaps

$$
P\{o d d\}=0.6 \quad \text { is possible. }
$$

Basics Concepts

- Prob. Of union of two events:
- $\quad P\{A \bigcup B\}=P\{A\}+P\{B\}-P\{A \cap B\}$

- Ex: Roll of a die
$P\{$ outcome even \backslash outcome $\leq 3\}$

$$
\begin{aligned}
& =P\{\text { even }\}+P\{\leq 3\}-P\{\text { even } \cap \leq 3\} \\
& =\frac{3}{6}+\frac{3}{6}-\frac{1}{6}=\frac{5}{6}
\end{aligned}
$$

- If \mathbf{A} and \mathbf{B} are disjoint, i.e. if $A \cap B=\varphi$ (i.e. empty set),

$$
\begin{aligned}
& \quad P\{A \bigcup B\}=P\{A\}+P\{B\} \\
& P\{\bar{A}\}=1-P\{A\}
\end{aligned}
$$

Conditional Probability

- Conditional probability

$$
P\{A \mid B\}=\frac{P\{A \bigcap B\}}{P\{B\}} \text { for } P\{B\}>0
$$

$\mathrm{P}\{\mathrm{AIB}\}$ is the probability of A , given we know B has happened.

- If \mathbf{A} and \mathbf{B} are independent, $\mathrm{P}\{\mathrm{AIB}\}=\mathrm{P}\{\mathrm{A}\}$. Then

$$
P\{A \cap B\}=P\{A\} P\{B\}
$$

- Example: A toss of a coin is independent of the outcome of the previous toss.

Conditional Probability

- If \mathbf{A} can be divided into disjoint $A_{i}, i=1, . ., n$, then

$$
P\{B\}=\sum_{i} P\left\{B \mid A_{i}\right\} P\left\{A_{i}\right\}
$$

- Example: A chip is made by two factories A and B. One percent of chips from A and 0.5% from B are found defective. A produces 90% of the chips. What is the probability a randomly encountered chip will be defective?
- $\mathrm{P}\{$ a chip is defective $\}=(1 / 100) \times 0.9+(0.5 / 100) \times 0.1$ $=0.0095$ i.e., 0.95%

Bayes' Rule

- Conditional probability
$P\{A I B\}$ is the probability of A, given we know B has happened.
$P\{B\}=P\{B \mid A\} P\{A\}+P\{B I \neg A\} P\{\neg A\}$

$$
P\{A \mid B\}=\frac{P\{A \bigcap B\}}{P\{B\}} \text { for } P\{B\}>0
$$

- Bayes' Rule

$$
P\{A \mid B\}=\frac{P\{B \mid A\} P\{A\}}{P\{B\}} \text { for } P\{B\}>0
$$

- Example: A drug test produces 99% true positive and 99% true negative results. 0.5% are drug users. If a person tests positive, what is the probability he is a drug user?

$$
\begin{aligned}
P\{D U \mid P\} & =\frac{P\{P \mid D U\} P\{D U\}}{P\{P \mid D U\} P\{D U\}+P\{P \mid n D U) P\{n D U\}} \\
& =33.3 \%
\end{aligned}
$$

Bayes' Rule: Posterior Probability

- Implications of Bayes' rule:

$$
P\{A \mid B\}=\frac{P\{B \mid A\} P\{A\}}{P\{B\}} \text { for } P\{B\}>0
$$

- $P\{A\}$ represents prior probability, when we did not know about B.
- $P\{A I B\}$ represents posterior probability, after we know B.

Bayes’ Rule: Example

- OJ Simpson Trial: There was a prior belief of guilt. There was a blood match. What is the updated belief.
- Given Information on Blood Test (T+/T-)
- Sensitivity: $P(T+\mid$ Guilty $)=1$
- Specificity: $P(T-I$ Innocent $)=.9957 \Rightarrow P(T+\mid \operatorname{Inn})=.0043$
- Suppose you have a prior belief of guilt: $P(G)=p^{*}$
- What is "posterior" probability of guilt after seeing evidence that blood matches: $\mathrm{P}(\mathrm{G} \mid \mathrm{T}+)$?

$$
\begin{aligned}
& P(T+)=P\left(T^{+} G\right)+P\left(T^{+} I\right)=P(G) P\left(T^{+} \mid G\right)+P(I) P\left(T^{+} \mid I\right)= \\
& =p^{*}(1)+\left(1-p^{*}\right)(.0043) \\
& P\left(G \mid T^{+}\right)=\frac{P\left(T^{+} G\right)}{P\left(T^{+}\right)}=\frac{P(G) P\left(T^{+} \mid G\right)}{P\left(T^{+}\right)}=\frac{p^{*}(1)}{p^{*}(1)+\left(1-p^{*}\right)(.0043)}=\frac{p^{*}}{.9957 p^{*}+.0043}
\end{aligned}
$$

B.Forst (1996). "Evidence, Probabilities and Legal Standards for Determination of Guilt: Beyond the OJ Trial",

Bayes’ Rule: Example

$$
\begin{aligned}
& \text { Prior Probability of Guilt : } \quad P(G)=.10 \Rightarrow \\
& P\left(G \mid T^{+}\right)=\frac{.10(1)}{.10(1)+.90(.0043)}=\frac{.10}{.10387}=.9627
\end{aligned}
$$

$\mathbf{P}(\mathrm{G} \mid \mathrm{T}+)$ as function of $\mathbf{P}(\mathrm{G})$

Even if the prior probability of guilt is low, positive test outcome makes it almost certain.

Confusion Matrix

- There are no perfect tests. Applicable to diseases, cyber intrusions etc.
- Binary classification problem

	Disease +	Disease -
Test +ve	TP	FP
Test -ve	FN	TN

- \quad Sensitivity $=$ TP/(TP+FN) also TPR true pos rate
- If the person has the disease, what is the prob test is positive?
- Specificity = TN/(FP+TN) also TNR true neg rate
- If the person does not have the disease, what is the prob test is indeed negative?
- $\quad \mathrm{FPR}=1-\mathrm{TPR}, \mathrm{FNR}=1-\mathrm{TNR}$
- Precision = TP/(TP+FP) PPV positive predictive value
- If the result is positive, what is the prob it is true?
- Several other measures used.
- Ex: TP=100, $\mathrm{FP}=10, \mathrm{FN}=5, \mathrm{TN}=50$
- Precision $=100 /(100+10)=0.901$

Example: Intrusion Detection

- If an ID scheme is more sensitive, it will increase false positive rates.
- Ex Car alarm

Figure 2-5. ROC Curves for different intrusion detection techniques

- True Positive rate (sensitivity) vs False Positive Rate
- Area under the ROC receiver operating characteristic curve is a good measure of the ID scheme.

Random Variables

- A random variable (r.v.) may take a specific random value at a time. For example
- X is a random variable that is the height of a randomly chosen student
- $\quad x$ is one specific value (say $5^{\prime \prime} 9$ ")
- A random variable is defined by its density function.
- A r.v. can be continuous or discrete

		continuous	discrete
Density function	$f(x) d x$	$P\{x \leq X \leq x+d x\}$	$p\left(x_{i}\right)$
"Cumulative distribitution function (caff	$F(x)$	$\int_{x \min }^{x} f(x) d x$	$\sum_{i=i \min }^{i \max } p\left(x_{i}\right)$
Expected value (mean)	$E(X)$	$\int_{x \min }^{x \max } x f(x) d x$	$\sum_{i=i \min }^{i \max } x_{i} p\left(x_{i}\right)$

Distributions, Binomial Dist.

- Note that

$$
\int_{x \min }^{x \max } f(x) d x=1 \quad \sum_{i \min }^{i \max } p\left(x_{i}\right)=1
$$

- Major distributions:
- Discrete: Bionomial, Poisson
- Continuous: Gaussian, expomential
- Binomial distribution: outcome is either success or failure
- Prob. of r successes in \boldsymbol{n} trials, prob. of one success being p

$$
\begin{array}{r}
f(r)=\binom{n}{r} p^{r}(1-p)^{n-r} \quad \text { for } \quad r=0, \ldots, n \\
\text { incidentally }\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
\end{array}
$$

Distributions: Poisson

- Poisson: also a discrete distribution, λ is a parameter.

$$
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

- Example: $\mu=$ occurrence rate of something.
- Probability of r occurrences in time t is given by

$$
f(r)=\frac{(\mu t)^{r} e^{-\mu t}}{r!}
$$

Often applied to fault
arrivals in a system

Distributions: Gaussian ${ }^{\text {ºq ао }}$

Laplace discovered it before

- Continuous. Also termed Normal

Gauss in 1774 AD! (called Laplacian in France! ${ }^{1774 \text { AD })}$

$$
\begin{aligned}
f(x)= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& -\infty \leq x \leq+\infty
\end{aligned}
$$

$\sigma:$ standard deviation which is
($\sqrt{\text { variance })}$
$\mu:$ mean

Bell-shaped curve

Normal distribution (2)

- Tables for normal distribution are available, often in terms of standardized variable $\mathbf{z =}=(\mathbf{x}-\mu) / \sigma$.
- $(\mu-\sigma, \mu+\sigma)$ includes 68.3% of the area under the curve.
- ($\mu-3 \sigma, \mu+3 \sigma$) includes 99.7% of the area under the curve.
- Central Limit Theorem: Sum of a large number of independent random variables tends to have a normal distribution.

The reason why normal distribution is applicable in many cases
"माजसक्ताप"

German 10 Mark bill with Gauss

Exponential \& Weibull Dist.

Exponential Distribution: is a continuous distribution.

- Density function

$$
f(t)=\lambda e^{-\lambda t} \quad 0<t \leq \infty
$$

Example:

- λ : exit or failure rate.
- $\operatorname{Pr}\{$ exit the good state during ($\mathrm{t}, \mathrm{t}+\mathrm{dt}$) \}

$$
=e^{-\lambda t} \lambda d t
$$

- The time T spent in good state has an exponential distribution
- Weibull Distribution: is a 2parameter generalization of
 exponential distribution. Used when better fit is needed, but is more complex.

Variance \& Covariance

- Variance: a measure of spread
- $\operatorname{Var}\{\mathrm{X}\}=\mathrm{E}\left[\mathrm{X}-\mu_{\mathrm{x}}\right]^{2}$
- Standard deviation $=(\operatorname{Var}\{x\})^{1 / 2}$
- $\sigma=$ standard deviation (usually for normal dist)
- Covariance: a measure of statistical dependence
- $\operatorname{Cov}\{X, Y\}=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]$
- Correlation coefficient: normalized

$$
\rho_{x y}=\operatorname{Cov}\{X, Y\} / \sigma_{x} \sigma_{y}
$$

Note that $0<1 \rho_{\mathrm{xy}} \mid<1$

Stochastic Processes

- Stochastic process: that takes random values at different times.
- Can be continuous time or discrete time
- Markov process: discrete-state, continuous time process. Transition probability from state i to state j depends only on state i (It is memory-less)
- Markov chain: discrete-state, discrete time process.
- Poisson process: is a Markov counting process $N(t), t \geq 0$, such that $N(t)$ is the number of arrivals up to time t .

FAQ

- What kind of faults are tested by design for testability approaches? Stuck-at or delay?
- Testing for stuck-at faults may detect some delay faults.
- There is a DFT for delay faults.
- Why we need probability distributions?
- Failures are often considered probabilistically. For proper analysis we need the appropriate distributions of the random variables involved.

C-C. Liaw, S. Y. Su, and Y. K. Malaiya. "Test generation for delay faults using stuck-at-fault test set."
Proc. of International Test Conf. 1980, pp. 167-175
Y.K. Malaiya and R. Narayanawamy, Modeling and testing for timing faults in synchronous sequential circuits, IEEE Design and Test, pp. 62-74 (Nov. 1984)

Poisson Process: properties

- Poisson process: A Markov counting process $\mathrm{N}(\mathrm{t})$, $t \geq 0, N(t)$ is the number of arrivals up to time t.
- Properties of a Poisson process:
- $\mathbf{N}(0)=0$
- $P\{a n$ arrival in time $\Delta t\}=\lambda \Delta t$
- No simultaneous arrivals
- We will next see an important example. Assuming that arrivals are occurring at rate λ, we will calculate probability of n arrivals in time t.

Poisson process: analysis

- A process is in state I, if I arrivals have occurred.
- $P_{i}(t)$ is the probability the process is in state i.

- In state i, probability is flowing in from state $\mathrm{i}-1$, and is flowing out to state $i+1$, in both cases governed by the rate λ.
Thus

$$
\frac{d P_{i}(t)}{d t}=-\lambda P_{i}(t)+\lambda P_{i-1}(t) \quad n=0,1, . .
$$

We'll solve it first for $\mathrm{P}_{\mathbf{0}}(\mathrm{t})$,
then for $P_{1}(t)$, then ...

Poisson process: Solution for $\mathrm{P}_{0}(\mathrm{t})$

$P_{0}=P\{$ process in state 0$\}$
$P_{0}(t+\Delta t)=P_{0}(t)[1-\lambda \Delta t]$
$\frac{P_{0}(t+\Delta t)-P_{0}(t)}{\Delta t}=-\lambda P_{0}(t)$
$\frac{d P_{0}(t)}{d t}=-\lambda P_{0}(t)$

Solution:
$\ln \left(P_{0}(t)\right)=-\lambda t+C$
$P_{0}(t)=C_{2} e^{-\lambda t}$
Since $P_{0}(0)=1, C_{2}=1$,

$$
P_{0}(t)=e^{-\lambda t}
$$

Poisson Process: General solution

We need to solve

$$
\frac{d P_{i}(t)}{d t}=-\lambda P_{i}(t)+\lambda P_{i-1}(t) \quad n=0,1, . .
$$

Using the expression for $P_{0}(t)$, we can solve it for $P_{1}(t)$.

Solving recursively, we get

$$
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} \quad n=0,1, . . \quad \begin{gathered}
\text { Which we know is } \\
\text { Poisson distribution! }
\end{gathered}
$$

Poisson Process: Time between Two Events

Here we'll show that the time to next arrival is exponentially distributed.

$P\left\{t_{i_{+1}}>t\right\}=P\left\{\right.$ no arrival in $\left.\left(t_{i}, t_{i}+t\right)\right\}=e^{-\lambda t}$
Thus the cumulative distribution function (cdf) is given by
$F(t)=P\{0 \leq T \leq t\}=1-e^{-\lambda t}$
Since the density function is derivative of cdf,
differentiating both sides, we get
$f(t)=\lambda e^{-\lambda t}$
Exponential distribution

