

Reliability Analysis: Outline

Reliability measures:

- Reliability, availability, Transaction Reliability,
- MTTF and R(t), MTBF

Basic Cases

- Single unit with permanent failure, failure rate
- Single unit with temporary failures
- **Combinatorial Reliability: Block Diagrams**
- Serial, parallel. K-out-of-n systems
- Imperfect coverage

Redundancy

- TMR, spares
- Generalized

Reliability Analysis

- Permanent faults
 - The unit will eventually fail. Thus reliability "decays".
- Temporary faults
 - Faults come and go. Often Steady state characterization is possible.
 - Permanent faults subject to repair are modeled as temporary faults.
- Design faults
 - Reliability growth occurs during testing & debugging. We will study this under "Software Reliability" later.

Why Mathematical Analysis?

- You can determine reliability by constructing a large number of copies of the target system, and collecting failure data. However, that would be infeasible except for special cases.
- Thus we need to be able to determine the reliability before a system is built, by using the information we have about the components and the proposed architecture.

Basic Reliability Measures

- **Reliability:** durational (default)
 - R(t)=P{correct operation in duration (0,t)}
 - This is the default definition of reliability.
- Availability: instantaneous

A(t)= P{correct operation at instant t)}

- Applied in presence of temporary failures
- A steady-state value is the expected value over a range of time.
- Transaction Reliability: single transaction

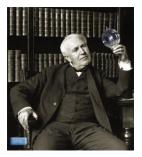
R_t=P{a transaction is performed correctly}

• The term "Reliability" is sometimes used with a non-standard meaning.

Mean time to ...

- Mean Time to Failure (MTTF): expected time the unit will work without a failure.
- Mean time between failures (MTBF): expected time between two successive failures.
 - Applicable when faults are temporary.
 - The time between two successive failures includes repair time and then the time to next failure.
 - Approximately equal to
- Mean time to repair (MTTR): expected time during which the unit is non-operational.

Mean time to ...



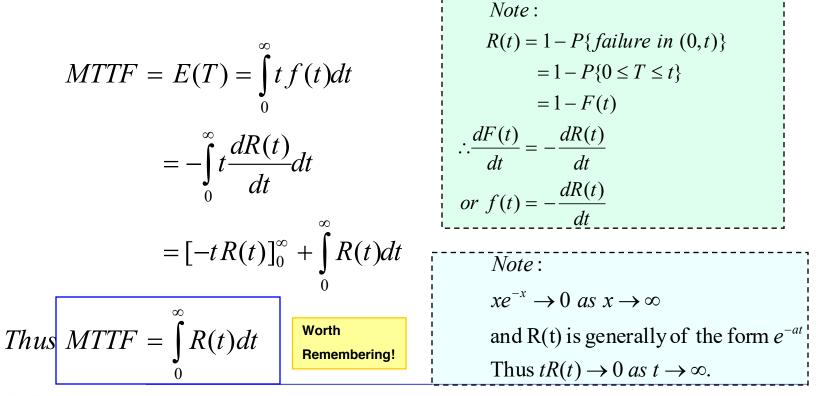
Average Rated Life for Various Types of Bulbs

Туре	Hours
Incandescent	750-2,000
Compact Fluorescent CFL	
Plug-in	10,000-20,000
Screw-based	8,000-10,000
Halogen	2,000-4,000
LED	40,000-50,000 ?

The Great Lightbulb Conspiracy: The Phoebus cartel engineered a shorterlived lightbulb and gave birth to planned obsolescence IEEE Spectrum

Mean Time to Failure (MTTF)

There is a very useful general relation between MTTF and R(t).
 Here T is time to failure, which is a random variable.

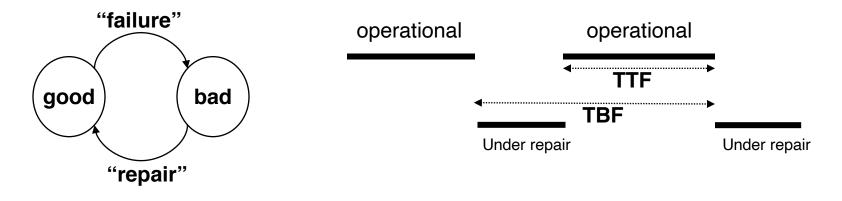


February 16, 2021

Fault Tolerant Computing ©Y.K. Malaiya

Failures with Repair

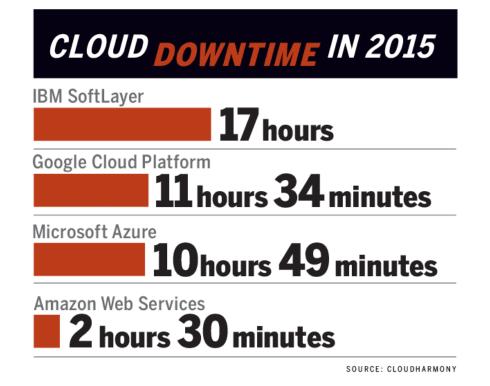
• Time between failures: time to repair + time to next failure



• MTBF = MTTF + MTTR

- MTBF, MTTF are same same when MTTR ≈ 0
- Steady state availability = MTTF / (MTTF+MTTR)

Downtime of Cloud Services



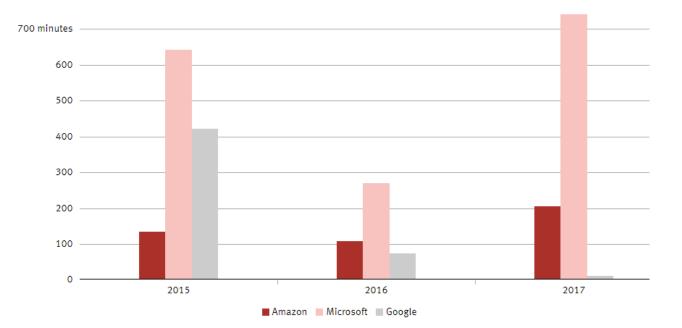
And the cloud provider with the best uptime in 2015

is .. <u>Network World</u>

Downtime of Cloud Services

Cloud Outages

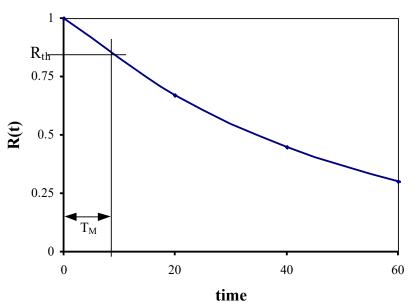
Total time lost



https://www.theinformation.com/articles/how-aws-stacks-up-against-rivals-on-downtime?shared=cMitFeGtWn4 https://www.geekwire.com/2019/google-really-run-reliable-cloud-service-even-sources-skeptical/

Mission Time (High-Reliability Systems)

- Reliability throughout the missic must remain above a threshold reliability R_{th.}
- Mission time T_M: defined as the duration in which R(t)≥R_{th.}
- R_{th} may be chosen to be perhaps 0.95.
- Mission time is a strict measure, used only for very high reliability missions.

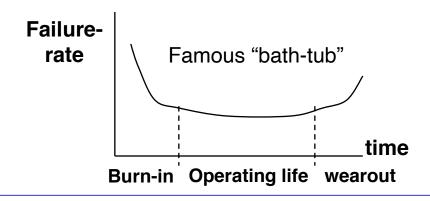


Two Basic cases

- We next consider two very important basic cases that serve as the basis for time-dependent analysis.
- 1. Single unit subject to permanent failure
 - We will assume a constant failure rate to evaluate reliability and MTTF.
- 2. Single unit with temporary failures
 - System has two states Good and Bad, and transitions among them are defined by transition rates.
- Both of these are example of Markov processes.

Constant Failure Rate Assumption

- We will always assume a constant failure rate.
 - It keeps analysis simple.
 - During operating life, the failure rate is approximately constant.
- The Bath-Tub curve:
 - In the beginning the failure rate is high because the weaker devices fail due to "infant mortality". Near the end the failure rate is again high due to "aging" or wear-out of devices.



Disjoint vs independent

• If A and B are disjoint, i.e. if $A \cap B = \varphi$ (i.e. empty set),

 $P\{A \bigcup B\} = P\{A\} + P\{B\}$

If A and B are independent, P{A|B}= P{A}. Then

 $P\{A \cap B\} = P\{A\}P\{B\}$

- Estimation by Inspection Sampling: assuming Team 1 discovers the same fraction of faults, of all and those fund by Team
- Then x1/x = x3/x2
- Problem: tose found by Team 2 are easier to find. Thus actually $\frac{x_3}{2} > \frac{x_1}{2}$ hence $x > \frac{x_1x_2}{2}$

 $X_2 \qquad X$

 X_{2}

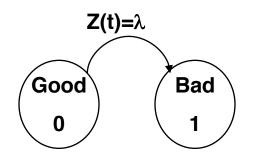
Policies

https://www.cs.colostate.edu/~cs530dl/

- Use of electronic devices (phones, pads or laptops) is not permitted in during the class.
- No collaboration of any type is permitted among the students in homework assignments and quizzes.

Basic Cases: Single Unit with Permanent Failure

- Failure rate is the probability of failure/unit time
- Assumption: constant failure-rate λ



The state transition diagram & the differential equation represent What we call Markov Modeling.

 $\frac{dp_0(t)}{dt} = -\lambda \ p_0(t) \text{ since the rate of leaving state 0 depends}$

on probability of being in state 0

 $p_0(0) = 1$ initial condition

Single Unit with Permanent Failure (2)

$$\frac{dp_0(t)}{dt} = -\lambda p_0(t)$$

$$p_0(0) = 1$$

$$Solution: p_0(t) = e^{-\lambda t}$$

$$Since R(t) = p_0(t)$$

$$R(t) = e^{-\lambda t}$$

$$time$$

"The Exponential reliability law"

At
$$t = \frac{1}{\lambda}$$
, $R(t) = e^{-1} = 0.368$

Fault Tolerant Computing ©Y.K. Malaiya

Single Unit: Permanent Failure (3)

$$R(t) = e^{-\lambda t}$$

A(t) is same as R(t) in this case.

$$MTTF = \int_{0}^{\infty} R(t)dt = \int_{0}^{\infty} e^{-\lambda t}dt$$
$$= \left[-\frac{e^{-\lambda t}}{\lambda}\right]_{0}^{\infty}$$
$$= \frac{1}{\lambda}$$

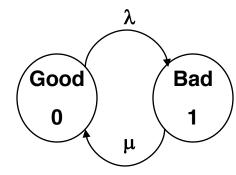
- Ex 1: a unit has MTTF =30,000 hrs. Find failure rate.
 λ=1/30,000=3.3x10⁻⁵/hr
- Ex 2: Compute mission time T_M if $R_{th} = 0.95$. $e^{-\lambda T}M = 0.95$ $T_M = -\ln(0.95)/\lambda$

• **Ex 3:** Assume $\lambda = 3.33 \times 10^{-5}$, and $R_{th} = 0.95$ find $T_{M.}$ Ans: $T_{M} = 1538.8$ hrs (compare with MTTF = 30,000)

Single Unit: Temporary Failures(1)

Temporary: intermittent, transient, permanent with repair

10



Y. K. Malaiya, S. Y. H. Su: Reliability Measure of Hardware Redundancy Fault-Tolerant Digital Systems with Intermittent Faults. IEEE Trans. Computers 30(8): 600-604 (1981)

$$\frac{dp_0(t)}{dt} = -\lambda \ p_0(t) + \mu \ p_1(t)$$
$$\frac{dp_1(t)}{dt} = +\lambda \ p_0(t) - \mu \ p_1(t)$$

Note state diagram & Differential equations for Markov modeling

can be solved by laplace transform etc.

$$p_0(t) = p_0(0)e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}(1 - e^{-(\lambda + \mu)t})$$

Similarly we can get an expression for $p_1(t)$, however it is

not needed since $p_1(t) = 1 - p_0(t)$.

February 16, 2021

Single Unit: Temporary Failures(2)

•
$$p_0(t) = p_0(0)e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}(1 - e^{-(\lambda + \mu)t})$$

• Availability $A(t) = p_0(t)$

Thus
$$A(t) = p_0(0)e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}(1 - e^{-(\lambda + \mu)t})$$

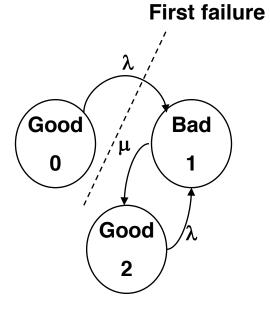
• Note that steady – state probabilities exist :

$$t \to \infty, p_0(t) = \frac{\mu}{\lambda + \mu} \qquad p_1(t) = \frac{\lambda}{\lambda + \mu}$$

• Steady - state availability is
$$\frac{\mu}{\lambda + \mu}$$

Single Unit: Temporary Failures(3)

- Reliability (durational) $R(t) = P\{\text{no failures in } (0,t)\}$ $= P\{\text{in Good 0 at t}\}$ $= e^{-\lambda t}$
 - same as permanent failure
- Thus MTTF = $\frac{1}{\lambda}$
- Mission time : also same



Note that when we say **no failures in (0,t)**, even a brief failure is a failure. Thus R(t) may be too strict a measure when brief failures may be acceptable.

Combinatorial Reliability

This is a part of classic reliability theory.

Objective is: Given a

- systems structure in terms of its units
- reliability attributes of the units
- some simplifying assumptions
- We need to evaluate the overall reliability measure.

There are **two extreme cases** we will examine first:

- Series configuration
- Parallel configuration
- Other cases involve combinations and other configurations.
- Note that conceptual modeling is applicable to R(t), A(t), R_t(t). A system is either good or bad.

Series configuration

Series configuration: all units are essential. System fails if one of them fails .

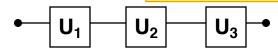
• Assumption: statistically independent failures in units.

$$R_{S} = P\{U_{1} \text{ good } \cap U_{2} \text{ good } \cap U_{3} \text{ good } \}$$
$$= P\{U_{1} g\}P\{U_{2} g\}P\{U_{3} g\}$$
$$= R_{1}R_{2}R_{3}$$
In general $R_{S} = \prod_{i=1}^{n} R_{i}$

i=1

Series configuration

The reliability block diagrams like this are only conceptual, not physical.



If $\mathbf{R}_{i}(t) = e^{-\lambda_{i}t}$

then $\mathbf{R}_{s}(t) = \Pi e^{-\lambda_{i}t} = e^{-[\lambda_{1} + \lambda_{2} + \dots + \lambda_{n}]t}$

i.e. system failure rate is the sum of individual failure rates :

$$\lambda_{\rm S} = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

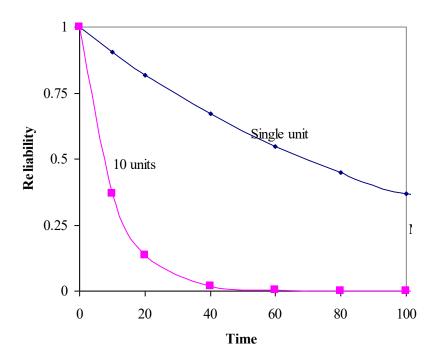
This gives us a nice way to estimate the overall failure rate, when all the individual units are essential. This is the basis of the approach used in the popular "Military Handbook" MIL-HDBK-217 approach for estimating the failure rates for different systems.

The failure rates of individual units are estimated using empirical formulas. For example the failure rate of a VLSI chip is related to its complexity etc.

"A chain is as strong as it's weakest link"

Let us see for a 4-unit series system

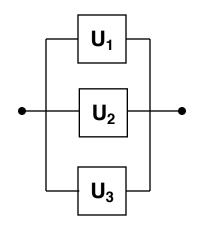
- Assume $R_1 = R_2 = R_3 = 0.95$, $R_4 = 0.75$
 - R_s= 0.95x0.95x0.95x0.75
 =0.643
- Thus a chain is slightly weaker than its weakest link!
- The plot gives reliability of a 10-unit system vs a single system. Each of the 10 units are identical.
- More units, less reliability.



Combinatorial: Series

Combinatorial: Parallel

• **Parallel configuration:** System is good when least one of the several replicated units is good. A parallel configuration represents an *ideal* redundant system, ignoring any overhead.



$$R_{s} = 1 - P\{all \ units \ bad\}$$

$$= 1 - P\{U_{1} \ bad \cap U_{2} \ bad \cap U_{3} \ bad\}$$

$$= 1 - P\{U_{1} \ b.\} P\{U_{2} \ b.\} P\{U_{3} \ b.\}$$

$$= 1 - (1 - R_{1})(1 - R_{2})(1 - R_{3})$$
In general $R_{s} = 1 - \prod_{i=1}^{n} (1 - R_{i})$
i.e. $\overline{R}_{s} = \prod_{i=1}^{n} \overline{R}_{i}$ Where \overline{R} represents 1-R, i.e. "unreliability"

February 16, 2021

Fault Tolerant Computing ©Y.K. Malaiya Combinatorial: Parallel

27

Parallel Configuration: Example

Problem : Need system reliability $R_s = 1 - \in$ How many parallel units are needed if $R_1 = R_2 = \cdots = R_m$, $R_m < R_s$?

Sometimes it is more convenient to talk in terms of "*unreliability*"

Solution
$$:1 - R_s = (1 - R_m)^x$$

 $\in = (1 - R_m)^x$
 $x = \frac{\ln \epsilon}{\ln(1 - R_m)}$
Remember,
we're consider
an *ideal* system

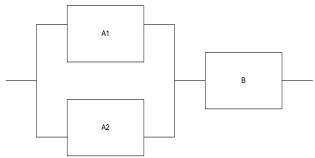
Assume $R_s = 0.9999 (\epsilon = 0.0001),$
 $R_m = 0.9$
gives $x = 4$.

Fault Tolerant Computing ©Y.K. Malaiya

28

Combinatorial: Parallel

An Example Problem



The failure rate for sub-units A1 and A2 is λ_A , for sub-unit B the failure rate is λ_B , You can assume independence of failures for subunits. Find an expression for R(t) and MTTF.

R(t) = [P{A1 is good}P{A2 is good} + P{A1 is good}P{A2 is bad} + P{A1 is bad}P{A2 is good}] ∩ P{B is good}

= [1- P{A1 is bad}P{A2 is bad}]
$$\cap$$
 P{B is good}
= [1 - (1 - e^{-\lambda_A t})^2]e^{-\lambda_B t} = [2e^{-\lambda_A t} - e^{-2\lambda_A t}]e^{-\lambda_B t}
= [2-e^{-\lambda_A t}]e^{-(\lambda_A + \lambda_B)t}

•
$$MTTF = \int_0^\infty R_1(t)dt = \int_0^\infty [2 - e^{-\lambda_A t}] e^{-(\lambda_A + \lambda_B)t} dt = 2\int_0^\infty e^{-(\lambda_A + \lambda_B)t} dt - \int_0^\infty e^{-(2\lambda_A + \lambda_B)t} dt = \frac{2}{\lambda_A + \lambda_B} - \frac{1}{2\lambda_A + \lambda_B}$$

