
2/23/21 1

Fault Tolerant Computing
CS 530

Software Reliability: Static
Factors

Yashwant K. Malaiya
Colorado State University

2/23/21 3

Wholistic Engineering for Software Reliability
Outline

• Techniques available in Software Reliability
• Software & Hardware Reliability
• Defect density & factors that control it

§ Phase
§ Programming team and process maturity
§ Software Structure
§ Requirement volatility
§ Reuse

2/23/21 4

Wholistic Engineering for Software Reliability

Software Fail Watch: 5th Edition, Tricentis
Year 2017

2/23/21 5

Time to go Wholistic

• We have data on different aspects of
reliability to have reasonable hypotheses.

• We know limitations of the hypotheses.
• We have enough techniques & tools to start

engineering.
• Accuracy comparable to or better than

established hardware reliability methods.

2/23/21 6

2/23/21 7

Why It’s Needed Now

• Reliability expectations growing fast
• Large projects, little time
• Quick changes in developing environments
• Reliance on a single technique not enough
• Pioneering work has already been done.

2/23/21 8

Questions/Perspective

• TMR: static redundancy - masking
• Active + Backup: dynamic redundancy
• TMR with spares: static + dynamic

Serial
(no redundancy)

Parallel
(ideal)

Reliability

Impact of overhead

2/23/21 9

Q/P: ;Voter Design
• Output is equal to majority
• Design this simple voter as a combinational

circuit
I0 I1 I2 Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

1 1 1 1

2/23/21 10

Why It’s Time: Emergence of SRE
• Craft: incremental intuitive refinement
• Science: why it is so

§ Observe, hypothesize, assess accuracy
• Engineering: how to get what we want

§ Approximate, integrate, evaluate
• Are we ready to engineer software

reliability?

2/23/21 11

Learning from Hardware Reliability

• Hardware Reliability Methods: Well
known, well established methods
§ Now standard practice
§ Used by government and industrial

organizations worldwide
§ Considered a well established science

2/23/21 12

Hardware Reliability: The Status (1)

• Earliest tube computers: MTTF comparable
to some computation times!

• 1956 RCA TR-1100: component failure rate
models

• 1959: MIL-HDBK-217A: common failure
rate: 0.4x10-6 for all ICs for all cases

• Revised about every 7 years

2/23/21 13

Hardware Reliability: The Status (2)

• Why use hardware reliability prediction?
§ Feasibility Study: initial design
§ Compare Design Alternatives: Reliability

along with performance and cost
§ Find Likely Problem Spots- high contributors

to the product failure rate
§ Track Reliability Improvements

2/23/21 14

Hardware vs Software Faults

• Hardware faults are generally field or
manufacturing process defects.

• Software faults are due to incorrect
design/implementation (“man-made”).

• During debugging, bugs are removed thus
reliability grows.

• Design defects on hardware are basically
similar to software defects.

2/23/21 15

Hardware vs Software Reliability
Methods: Use of models

Model selection
based on

Parameters estimated
using

Hardware Past experience with
similar units

Past experience with similar
units

Software Past experience* with
similar units

Early: past experience with
similar units
Later: from the unit under test

* Some researchers have suggested model selected
using early test data from the software under test.

2/23/21 16

2/23/21 17

Basic Definitions

• Defect: requires a corrective action
• Defect density: defects per 1000 non-

comment source lines (NC LOC).
• Failure intensity: rate at which failures are

encountered during execution.
• MTTF (mean time to failure): inverse of

failure intensity.
In this case mean is not taken over time,
rather it is an ensemble average.

2/23/21 18

Basic Definitions (2)

• Reliability
§ R(t)=p{no failures in time (0,t)}

• Transaction reliability: probability that a
single transaction will be executed
correctly.

• Test Time: may be measures in CPU time
or some measure of testing effort.

Limited use in Software
Reliability Engineering

2/23/21 19

Why is Defect Density Important?
• Important measurement of reliability
• Often used as release criteria.
• Typical values of defect density /1000 LOC mentioned in literature:

• Long term trend: tolerable defect density limits have been gradually dropping, i.e.
reliability expectations have risen.

 On Release Beginning
Of Unit
Testing Frequently

Cited in
literature

Highly
Tested
programs

NASA
Space
Shuttle
Software

16 2.0 0.33 0.1

Note: NASA space shuttle controversy: see appendix.

2/23/21 20

Static and Dynamic Modeling
• Reliability at release depends on

§ Initial number of defects (parameter)
§ Effectiveness of defect removal process (parameter)
§ Operating environment

• Static modeling: estimate parameters before testing begins
§ Use static data like software size etc.

• Dynamic modeling: estimate parameters during testing
§ Record when defects are found etc.
§ Time or coverage based

2/23/21 21

What factors control defect density?
• Need to know for

§ static estimation of initial defect density
§ Finding room for process improvement

• Static defect density models: The defect density is influenced by a
number of factors f1, f2, etc. The models combine the impact of factors
in two ways:
§ Additive (ex: Takahashi-Kamayachi)

D=a1f1+a2f2+a3f3…

§ Multiplicative (ex. MIL-HDBK-217, COCOMO, RADC)
D=C.F1(f1).F2(f2).F3(f3)…

2/23/21 22

A Static Defect Density Model
• Li, Malaiya, Denton (93, 97)

D=C.Fph.Fpt.Fm.Fs.Frv
• C is a constant of proportionality, based

on prior data, used for calibration.
• Default value of each function Fi

(submodel) is 1.
• Each function Fi is a function of some

measure of the attribute.
§ The function sub-model needs to be

determined using available data or reasoning.

Possible factors

Phase

Programming Team

Process Maturity

Structure

Requirement Volatility
(Code churn)

2/23/21 23

Submodel: Phase Factor Fph
• The table shows possible values, based on numbers

reported in the literature (Musa, Gaffney, Piwowarski et al.)

• The values are to give you an idea of variability. Actual
values will depend on specific process.

At beginning of phase Multiplier
Unit testing 4
Subsystem testing 2.5
System testing 1 (default)
Operation 0.35

2/23/21 24

Submodel: Programming Team
Factor Fpt

• Based on a study by Takahashi, Kamayachi, who found that
defect density declines by about 14% per year (up to seven
years).

• It is agreed that programming team skills have a significant
impact. However measuring skill is hard and there are no
good quantitative studies.

Team’s average skill level Multiplier
High 0.4
Average 1 (default)
Low 2.5

2/23/21 25

SEI- Capability Maturity Model

• Software Engineering Institute Capability
Maturity Model (will use CMM for SEI-CMM)

• Begun in 1986 from SEI and Mitre
§ framework for government to assess contractors

• Based on
§ Statistical quality control (Deming’s TQM, Juran)
§ Quality management (Crosby)
§ Feedback from industry and government

2/23/21 26

SEI Levels

SEI Level Key Feature How many
organizations?

1.Initial ad hoc 75%
2. Repeatable basic management 15%

3. Defined standardized 8%

4. Managed quantitative control 1.5%
5. Optimizing continuous improvement Handful (0.5%)

Estimating software costs: bringing realism to estimating By Capers Jones, 2007

2/23/21 27

Submodel: Process Maturity Factor Fm

• Based on Jones, Keene, Motorola data.

SEI CMM Level Multiplier
Level 1 1.5
Level 2 1 (default)
Level 3 0.4
Level 4 0.1
Level 5 0.05

2/23/21 28

Submodel: Structure Factor Fs (Pt 1)
• Assembly code fraction: assuming assembly has 40% more

defects
• Factor=1+0.4´fraction in assembly

• Complexity: Complex modules are more fault prone, but
there may be compensating factors, like people being more
cautious when implementing them. No conclusive results
are available that link measures like cyclomatic complexity
with defect density.

• Note that by definition, defect density is defects divided by
software size, which itself is a complexity metric. Question
is: does adding other complexity metric help? Answer is:
there is no compelling evidence.

2/23/21 29

Submodel: Structure Factor Fs (Pt 2)

• Module size: Data from several projects suggest that
very small modules have higher defect densities (Fig 1).
Note that many projects have a large number of small
modules (Distribution in Fig 2)

0

2

4

6

8

10

12

14

0 1000 2000Module size

D
ef

ec
t

de
ns

it
y

Observed
Fitted

0

50

100

150

200

250

300

0 100 200 300 400

Module size

M
od

ul
es

 C
ou

nt

Y. K. Malaiya and J. Denton
“Module Size Distribution and
Defect Density,” Proc. IEEE
International Symposium on
Software Reliability
Engineering, Oct. 2000, pp. 62-
71.

http://www.cs.colostate.edu/~malaiya/p/denton_2000.pdf

2/23/21 30

Submodel: Requirement volatility
Factor Frv (Code Churn)

• Impact depends on degree of changes
and when they occur.

• Most impact when changes occur
near the end of testing.

• Malaiya & Denton: ISSRE 99

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Time

Eq
ui

va
le

nt
 D

ef
ec

t D
en

si
ty

(p1,p2)=(0.10,0.10) (p1,p2)=(0.15,0.05) (p1,p2)=(0.05,0.15)

http://www.cs.colostate.edu/~malaiya/reqvol.pdf

Software Evolution
Successive versions of a program
• Bug fixes
• Added functionality
• Added support for new requirements
Results in
• Added code
• Modified code

2/23/21 31

Regression testing: after revisions

2/23/21 32

Reuse factor: A simple analysis
• u: fraction of software reused
• dr, dn: defect density of reused software, defect

density of new software, dr < dn
• Total defects = [u. dr+(1-u). dn]S

Where S is software size

• If there was no reuse, defects would be dnS
• Normalizing,

§ Reuse factor Fr(u, dr/dn)=[u. dr / dn +(1-u)]
§ Fr is 1 if there is no reuse, <1 if reuse.

2/23/21 33

2/23/21 34

Using the Defect Density Model
• Calibrate submodels before use using data from a project as

similar as possible.
• Constant C can range between 6-20 (Musa).
• Static models are very valuable, but high accuracy is not

expected.
• Useful when dynamic test data (we will discuss this soon)

yet available is not yet significant.

2/23/21 35

Static Model: Example
D = C.Fph.Fpt.Fm.Fs.Frv
•For an organization, C is between 12 and 16. The team has average
skills and SEI maturity level is II. About 20% of code in assembly. Other
factors are average (or same as past projects).

Estimate defect density at beginning of subsystem test
phase.
•Upper estimate=16´2.5´1´1´(1+0.4 ´0.20)´1=43.2/KSLOC

•Lower estimate= 12´2.5´1´1´(1+0.4´0.20)´1=32.4/KLOC

Here the structure factor is 1+0.4´0.20 because of some assembly code.
Factor 2.5 is for the beginning of the subsystem phase.

2/23/21 36

Static Models: Limitations
• Other multiplicative models like the COCOMO cost

estimation model would have similar limitations.
• The parameter values are based on past projects, which

may have been somewhat different.
• Calibration will be accurate only if data from somewhat

similar projects was used.
• Some factors may be statistically correlated, for example

Programming team and Capability Maturity factors.
• Still such models can be very useful at the beginning of

projects for planning the test effort.

2/23/21 37

Vulnerability Density
• Vulnerabilities are defects that are security related.
• A fraction of defects are vulnerabilities.

§ What is that fraction?
§ To be discussed later.

• O. H. Alhazmi, Y. K. Malaiya , I. Ray, " Measuring, Analyzing and Predicting Security
Vulnerabilities in Software Systems," Computers and Security Journal, Volume 26,
Issue 3, May 2007, Pages 219-228.

• A. A. Younis and Y. K. Malaiya,"Relationship between Attack Surface and
Vulnerability Density: A Case Study on Apache HTTP Server", ICOMP'12, 2012 Int.
Conference on Internet Computing, July 2012, pp. 197-203.

2/23/21 38

What is lowest defect density
achievable?

• What is the very best reliability level achievable, and how?

• Y. K. Malaiya, "Assessing Software Reliability Enhancement Achievable through
Testing", Recent Advancements in Software Reliability Assurance 2019, pp. 107-138.

2/23/21 39

Appendix

2/23/21 40

NASA Space Shuttle Defect Density?
Widely quoted. Here is the source.

Code Complete: A Practical Handbook of Software Construction, Steve
McConnel, Microsoft Press; 2nd edition (June 19, 2004)

• Industry Average: "about 15 - 50 errors per 1000 lines of delivered code."
• Microsoft Applications: "about 10 - 20 defects per 1000 lines of code during

in-house testing, and 0.5 defect per KLOC (in released product (Moore
1992)”.

• "Harlan Mills pioneered 'cleanroom development', a technique that has been
able to achieve rates as low as 3 defects per 1000 lines of code during in-house
testing and 0.1 defect per 1000 lines of code in released product (Cobb and
Mills 1990).

• A few projects - for example, the space-shuttle software - have achieved a
level of 0 defects in 500,000 lines of code using a system of format
development methods, peer reviews, and statistical testing."

2/23/21 41

NASA Space Shuttle Defect Density?
• R. V. Binder, "Can a Manufacturing Quality Model Work for Software?,"

IEEE Software, vol. 14, no. , pp. 101-102,105, 1997.
§ NASA Space Shuttle Avionics have a defect density of 0.1 failures/KLOC (Edward Joyce, "Is

Error-free Software Possible?" Datamation, Feb.18, 1989). Leading-edge software companies
have a defect density of 0.2 failures/KLOC.

• Code Complete: A Practical Handbook of Software Construction, Steve
McConnel, Microsoft Press; 2nd edition (June 19, 2004)
§ A few projects - for example, the space-shuttle software - have achieved a level of 0 defects in

500,000 lines of code using a system of format development methods, peer reviews, and
statistical testing."

• Nancy G. Leveson, Software and the Challenge of Flight Control, Chap 7 of
Space Shuttle Legacy: How We Did It/What We Learned, 2013.
§ A mythology has arisen about the Shuttle software with claims being made about it being

“perfect software” and “bug-free” or having “zero-defects”
• They Write the Right Stuff, Charles Fishman, Fast Company, 12.31.96

§ It is perfect, as perfect as human beings have achieved. Consider these stats : the last three
versions of the program — each 420,000 lines long-had just one error each. The last 11
versions of this software had a total of 17 errors. Ten years ago the shuttle group was
considered world-class. Since then, it has cut its own error rate by 90%.

• NASA Space Shutttle project lasted from April 12, 1981 to July 21, 2011

