Ing

Colorado State Universty

Fault Tolerant Comput

2/23/21

Wholistic Engineering for Software Reliability
Outline

* Techniques available in Software Reliability
» Software & Hardware Reliability

» Defect density & factors that control 1t
= Phase
» Programming team and process maturity
« Software Structure
» Requirement volatility

= Reuse

...........

Wholistic Engineering for Software Reliability

LOSSES FROM SOFTWARE FAILURES (USD)

1715430778 504

ONETRILLIONSEVENHUNDREDFIFTEENBILLIONFOURHUNDREDTHIRTYMILLIONSEVENHUNDREDSEVENTY-EIGHTTHOUSANDFIVEHUNDREDFOUR

Software Fail Watch: 5th Edition, Tricentis
Year 2017

iy b
SO ONE00 212321

lllllllllll

‘&

Co
S

A0
SRS

Time to go Wholistic

We have data on different aspects of
reliability to have reasonable hypotheses.

We know limitations of the hypotheses.
We have enough techniques & tools to start
engineering.

Accuracy comparable to or better than
established hardware reliability methods.

TISUTS IS

(-)
If you build it, they will come

- Yeah, I'm just
- writing the code now.

%)
. R

«é %
. .
cartoontester.blogspot.com © 2013
10} LQ_}_E'&LQ@' 2123121
B

Why It" s Needed Now

* Reliability expectations growing fast

» Large projects, little time

* Quick changes in developing environments
« Reliance on a single technique not enough

* Pioneering work has already been done.

Questions/Perspective

Parallel
(ideal)

Serial
(no redundancy)

Reliability >

<mpact of overhead

 TMR: static redundancy - masking
» Active + Backup: dynamic redundancy
 TMR with spares: static + dynamic

@@J(\ \’l 4 2123121
\ =

Q/P: ;Voter Design

* Qutput 1s equal to majority

* Design this simple voter as a combinational
circuit

el
0
0 0 1 0
0 1 O 0
0 1 1 1
1 1 1 1
J 2/23/21

CL,

Why It" s Time: Emergence of SRE

 Craft: incremental intuitive refinement

* Science: why 1t 1s so

 Engineering: how to get what we want

= Observe, hypothesize, assess accuracy

= Approximate, integrate, evaluate

* Are we ready to engineer software
reliability?

10

Learning from Hardware Reliability

« Hardware Reliability Methods: Well
known, well established methods

= Now standard practice

= Used by government and industrial
organizations worldwide

= Considered a well established science

............

11

Hardware Reliability: The Status (1)

» Earliest tube computers: MTTF comparable
to some computation times!

* 1956 RCA TR-1100: component failure rate
models

e 1959: MIL-HDBK-217A: common failure
rate: 0.4x10° for all ICs for all cases

* Revised about every 7 years

BT | T, PR

Coloraao 2123021 12
SiEte

g TSI

Hardware Reliability: The Status (2)

* Why use hardware reliability prediction?

Feasibility Study: 1nitial design

Compare Design Alternatives: Reliability
along with performance and cost

Find Likely Problem Spots- high contributors
to the product failure rate

Track Reliability Improvements

Yizax A b)
&) {).:_f' s,a:g’lé 212321 13

............

‘&

Co
S

Ay
.'5 J
SGELEE

Hardware vs Software Faults

Hardware faults are generally field or
manufacturing process defects.

Software faults are due to incorrect
design/implementation (“man-made”).

During debugging, bugs are removed thus
reliability grows.

Design defects on hardware are basically
similar to software defects.

0

.
e i la Y
Q,a\-’l@.

TISUTS IS

14

Hardware vs Software Reliability
Methods: Use of models

Model selection | Parameters estimated

based on using
Hardware Past experience with Past experience with similar
similar units units

Software |FPast experience™ with Early: past experience with
similar units similar units

Later: from the unit under test

* Some researchers have suggested model selected
using early test data from the software under test.

oAl)
SO0 2123021 15

............

~

A
ICTS IS

orrRdto

Qo
S

MAY 30, 1988

News

INFO

WORLD

Bugs May Delay Dbase IV Shipment to Fall, Ashton-Tate Says

By Mark Brownstein and Scott Mace

LOS ANGELES - Ashton-Tate told
sharcholders last week that the still bug-
ridden Dhase I'V could miss its projected
July shipping date but will definitely be
out by September 30.

Blaming the possible delay on undis-
covered bugs, Ashton-Tate chairman and
CEQ Edward J. Esber Jr. said, “We can
fix all the bugs that we've already found
before July,” and he suggested Ashton-
Tate could ship Dbase IV in July “if we
don’t find any more new bugs."

“Finding and fixing bugs is the only
issue’ that could cause Further delay, saxd
Roy E. Folk, Ashton-Tate vice president
and general manager of software devel-

opment, at the annual shareholders'
mecting. Folk challenged speculation
that the product takes most of the 640K
of available RAM under DOS, saying it
can run a 100K program on a network.

In fact, Ashton-Tate is fixing bugs by
correcting code errors instead of using
program patches that add to the pro-
gram’s size, Folk said.

Esber also spoke of other upcoming
Dbase 1V versions, including a Presenta-
tion Manager release and Dbase IV,
Version 1.1, which will take advantage of
the Ashton-Tate/Microsofl SQL Server
announced in January.

"“Dhase [V/PM will feature a graphi-

cal user interface,"” Esber said. “You will
also see further extensions in language
and some additional functionality.™

“The direction we're taking beyond
Dbasc IV should maintain our kead in the
Dbase area,™ Esber saud,

While chief financial olTscer George L.
Farinsky said Ashton-Tate could weather
any sales losses resulting from the later
shipping date, developers of Dbase add-
ons are faring considerably poorer,
Sources close to Wallsoft Systems of New
York say the developer of the Dbase code
generator and template language Ul
Programmer is for sale. The firm has
been hurt by the announcement that

Dbase 1V will include a Uldike code
generator and template language. Al
though Wallsoft plans to release a
second-generation update superior to
that announced by Ashton-Tate, it stll
awaits Dbase 1V,

“We've got 500 of the Fortune 500
companies saying, ‘Your product looks
good, but we want 1o wail 1o see Dbase
IV."™ said Martin Rinchart. Wallsoft's
president, Rinchart, who earfier this year
led an independent developers' effort to
create a Dbase standard, would not
comment on reports of his company’s
troubles. He was among Dhase add-on
developers who joined Ashton-Tate at
the Dixse |V announcement and are
now being hit hard by Dbase I'V's delay.

Bytel Corp. of Berkeley, California,
also acknowledged orders are “down
considerably™ for its Dbase code genera-
tor, Genilfer.

None of the add-on vendors greeted
last week's announcement of a further
Dbase 1V delay, though some claim
business is still good. “It's been for us the
best spring ever,” said John Henderson,
president of Concentric Data Systems
Inc., in Westboro, Massachusetts, which
makes the R&R Relational Report Writ-
er for Dbase,

But even Henderson warned that “we
can’t deal with uncertainty. The nature of
these preannouncements is really per-
sonally disturbing. If sales weren't doing
so well, 1 might be singing a different
tune.”

' Microsoft Ships

s 2123121

NaEle

16

Basic Definitions

Defect: requires a corrective action

Defect density: defects per 1000 non-
comment source lines (NC LOC).

Failure intensity: rate at which failures are
encountered during execution.

MTTF (mean time to failure): inverse of
failure intensity.

In this case mean is not taken over time,
rather it 1s an ensemble average.

\ v . \
SO 0NE00 2/23/21

Basic Definitions (2)

» Reliability ’
» R(t)=p{no failures in time (0,t)}

 Transaction reliability: probability that a
single transaction will be executed
correctly.

e Test Time: may be measures in CPU time
or some measure of testing effort.

Qo L@r@@:@ 2123121 18
NGElHE
MR

Why 1s Defect Density Important?

* Important measurement of reliability
Often used as release criteria.

* Typical values of defect density /1000 LOC mentioned in literature:

Beginning On Release

Of Unit :

Testing Fr.equéntly Highly NASA
Cited in Tested Space
literature programs Shuttle

Software
16 2.0 0.33 0.1

Long term trend: tolerable defect density limits have been gradually dropping, i.e.
reliability expectations have risen.

Note: NASA space shuttle controversy: see appendix.

Qolorado 2123021 19
NS
o (51N

Static and Dynamic Modeling

« Reliability at release depends on
= Initial number of defects (parameter)
= Effectiveness of defect removal process (parameter)
= Operating environment
» Static modeling: estimate parameters before testing begins
= Use static data like software size etc.
* Dynamic modeling: estimate parameters during testing
= Record when defects are found etc.

= Time or coverage based

otoyrandto 2/23/21

Ghle, 20

What factors control defect density?

* Need to know for
= static estimation of initial defect density
= Finding room for process improvement

« Static defect density models: The defect density is influenced by a
number of factors f, f,, etc. The models combine the impact of factors
in two ways:

= Additive (ex: Takahashi-Kamayachi)
D=a,f,+a-f,+af;...

« Multiplicative (ex. MIL-HDBK-217, COCOMQO, RADC)
D=C.F,(fl).F(fy).F3(fy)..

Coloraao 2123121 1

\\\\\\\\\\\\

A Static Defect Density Model
L1, Malaiya, Denton (93, 97)

D=CF,,F,.F,F.F,

: - _ Possible factors
C is a constant of proportionality, based

. . . Ph
on prior data, used for calibration. e
Default value of each function F, Programming Team
(submodel) is 1. Process Maturity
Each function F; is a function of some Structure
measure of the attribute. Requirement Volatility
= The function sub-model needs to be (Code churn)
determined using available data or reasoning.
OO 212321 "

Submodel: Phase Factor F

» The table shows possible values, based on numbers
reported in the literature (Musa, Gaffney, Piwowarski et al.)

At beginning of phase | Multiplier
Unit testing 4
Subsystem testing 2.5

System testing 1 (default)
Operation 0.35

The values are to give you an 1dea of variability. Actual
values will depend on specific process.

() i P Ve
L0703 EN00 22321

SlGEe 23

Submodel: Programming Team

Factor I
e Based on a study by Takahashi, Kamayachi, who found that

defect density declines by about 14% per year (up to seven

years).

Team’ s average skill level | Multiplier
High 0.4
Average 1 (default)
Low 2.5

» It 1s agreed that programming team skills have a significant

impact. However measuring skill 1s hard and there are no

good quantitative studies.

(YAt b= by
CO0NE00 212321
NiGLUHe
- '-h\-L-.?(

24

SEI- Capability Maturity Model

* Software Engineering Institute Capability
Maturity Model (will use CMM for SEI-CMM)
* Begun in 1986 from SEI and Mitre

= framework for government to assess contractors

* Based on
« Statistical quality control (Deming s TQM, Juran)
= Quality management (Crosby)
= Feedback from industry and government

Oaftiareardion
¢ @,{:‘-’):_f' ‘r’*}frl@' 212321 2s
SIGELE
g FTIOTE 1

SEI Levels

SEI Level Key Feature How many
organizations?

1.Initial ad hoc 75%

2. Repeatable |basic management 15%

3. Defined standardized 8%

4. Managed quantitative control 1.5%

5. Optimizing | continuous improvement

Handful (0.5%)

Estimating software costs: bringing realism to estimating By Capers Jones, 2007

2/23/21

26

Submodel: Process Maturity Factor F_

 Based on Jones, Keene, Motorola data.

SEI CMM Level Multiplier
Level 1 1.5

Level 2 1 (default)
Level 3 0.4

Level 4 0.1

Level 5 0.05

lllllllllll

Submodel: Structure Factor F_ (Pt 1)

* Assembly code fraction: assuming assembly has 40% more
defects

» Factor=1+0.4xfraction in assembly

* Complexity: Complex modules are more fault prone, but
there may be compensating factors, like people being more
cautious when implementing them. No conclusive results
are available that link measures like cyclomatic complexity
with defect density.

« Note that by definition, defect density is defects divided by
software size, which itself 1s a complexity metric. Question
1s: does adding other complexity metric help? Answer 1is:
there 1s no compelling evidence.

‘& | v kAN
Coloraaio 2123021 23

............

Submodel: Structure Factor F_ (Pt 2)

e Module size: Data from several projects suggest that
very small modules have higher defect densities (Fig 1).
Note that many projects have a large number of small

modules (Distribution in Fig 2)

14 -) :
300 Y. K. Malaiya and J. Denton
12 1 250 - “
=109 £ 200 ,” Proc. IEEE
5 s . International Symposium on
g 6- 3 Software Reliability
o = 100 . .
a 4 — e Observed Engineering, Oct. 2000, pp. 62-
5 —e— Fitted %07 71.
0 < VN &
0 | o 100 200 300 400
0 &OPO . 2000 Module size
Module size
Qoloradto 212321
Nizlie 29
DG,

http://www.cs.colostate.edu/~malaiya/p/denton_2000.pdf

Submodel: Requirement volatility
Factor F_ (Code Churn)

« Impact depends on degree of changes
and when they occur.

« Most impact when changes occur
near the end of testing.

e Malaiya & Denton:

L 2
[
2 18-
<
2 1.6 4
S
'5_1.4-
w 1.2 4

0 300 600 900 1200 1500 1800 2100 2400 2700 300¢

Time

|—(p1,p2)=(0.10,0.10) —— (p1,p2)=(0.15,0.05) —(p1,p2)=(0.05,0.15)|

y - T— N
@\% O X &) 2123021 30
et

http://www.cs.colostate.edu/~malaiya/reqvol.pdf

Software Evolution

Successive versions of a program

* Bug fixes

* Added functionality

* Added support for new requirements
Results 1n

e Added code

e Modified code

Natkavrcadlan
CO0ONE00 2123021 31

............

Regression testing: after revisions

Regression:
"when you fix one bug, you
infroduce several newer bugs."

B e Ve
L)
e ¥ e NSCIEE | = P
=~ Tly z\-' ’fi ’ : 3 A |
s" i

Qo LQ}J‘,‘}:LQ-}@ 2123121

Reuse factor: A simple analysis

u: fraction of software reused

d., d.: defect density of reused software, defect
density of new software, d.<d,

Total defects = [u. d.+(1-u). d,]S

Where S is software size

If there was no reuse, defects would be d S

Normalizing,
= Reuse factor F(u, d,/d,)=[u. d,./ d,+(1-u)]

= F.1s 1 1f there 1s no reuse, <1 1f reuse.

} v kAN
Coloraaio 2123021 13

lllllllllll

Using the Defect Density Model

 (alibrate submodels before use using data from a project as
similar as possible.

e Constant C can range between 6-20 (Musa).

« Static models are very valuable, but high accuracy 1s not
expected.

e Useful when dynamic test data (we will discuss this soon)
yet available 1s not yet significant.

Natkavrcadlan
L0 OFEA0 212321 34

............

Static Model: Example

D = C.F,,.F,.F,.F.F,

*For an organization, C 1s between 12 and 16. The team has average
skills and SEI maturity level 1s II. About 20% of code in assembly. Other
factors are average (or same as past projects).

Estimate defect density at beginning of subsystem test
phase.

*Upper estimate=16x2.5x1x1x(1+0.4 x0.20)x1=43.2/KSLOC
*Lower estimate= 12x2.5x1x1x(1+0.4x0.20)x1=32.4/KLOC

Here the structure factor is 1+0.4x0.20 because of some assembly code.
Factor 2.5 1s for the beginning of the subsystem phase.

A=A b
(03on f'\,a:{l@ 2/23/21 35

\\\\\\\\\\\

Static Models: Limitations

e Other multiplicative models like the COCOMO cost
estimation model would have similar limitations.

e The parameter values are based on past projects, which
may have been somewhat different.

e (Calibration will be accurate only 1f data from somewhat
similar projects was used.

« Some factors may be statistically correlated, for example
Programming team and Capability Maturity factors.

 Still such models can be very useful at the beginning of
projects for planning the test effort.

O 2123021

Vulnerability Density

* Vulnerabilities are defects that are security related.

* A fraction of defects are vulnerabilities.
= What is that fraction?
= To be discussed later.

 0O.H. Alhazmi, Y. K. Malaiya, I. Ray, " Measuring, Analyzing and Predicting Security
Vulnerabilities in Software Systems," Computers and Security Journal, Volume 26,
Issue 3, May 2007, Pages 219-228.

* A.A. Younis and Y. K. Malaiya,"Relationship between Attack Surface and
Vulnerability Density: A Case Study on Apache HTTP Server", ICOMP'12, 2012 Int.
Conference on Internet Computing, July 2012, pp. 197-203.

Atk onsadilan
Coloraaio 2123021 37

............

What 1s lowest defect density
achievable?

« What 1s the very best reliability level achievable, and how?

Y. K. Malaiya, "Assessing Software Reliability Enhancement Achievable through
Testing", Recent Advancements in Software Reliability Assurance 2019, pp. 107-138.

i »

(B2

}

e

7 4
Zp=

et
L=

(’3
z ,’1:}")
(D.

2/23/21 3 8

Oojloradto

St &)

RRLIBUTS (N

Appendix

2/23/21

39

NASA Space Shuttle Detfect Density?

Widely quoted. Here is the source.

Code Complete: A Practical Handbook of Software Construction, Steve
McConnel, Microsoft Press; 2nd edition (June 19, 2004)

* Industry Average: "about 15 - 50 errors per 1000 lines of delivered code."

* Microsoft Applications: "about 10 - 20 defects per 1000 lines of code during

in-house testing, and 0.5 defect per KLOC (in released product (Moore
1992)”.

« "Harlan Mills pioneered 'cleanroom development', a technique that has been
able to achieve rates as low as 3 defects per 1000 lines of code during in-house
testing and 0.1 defect per 1000 lines of code in released product (Cobb and
Mills 1990).

« A few projects - for example, the space-shuttle software - have achieved a
level of 0 defects in 500,000 lines of code using a system of format
development methods, peer reviews, and statistical testing."

Coloraao 2123121 40

............

NASA Space Shuttle Detfect Density?

R. V. Binder, "Can a Manufacturing Quality Model Work for Software?,"

IEEE Software, vol. 14, no. , pp. 101-102,105, 1997,

= NASA Space Shuttle Avionics have a defect density of 0.1 failures/KLLOC (Edward Joyce, "Is
Error-free Software Possible?" Datamation, Feb.18, 1989). Leading-edge software companies
have a defect density of 0.2 failures/KLOC.

Code Complete: A Practical Handbook of Software Construction, Steve
McConnel, Microsoft Press; 2nd edition (June 19, 2004)

= A few projects - for example, the space-shuttle software - have achieved a level of 0 defects in
500,000 lines of code using a system of format development methods, peer reviews, and
statistical testing."

Nancy G. Leveson, Software and the Challenge of Flight Control, Chap 7 of
Space Shuttle Legacy: How We Did It/What We Learned, 2013.

= A mythology has arisen about the Shuttle software with claims being made about it being
“perfect software” and “bug-free” or having “zero-defects”

They Write the Right Stuff, Charles Fishman, Fast Company, 12.31.96

= Itis perfect, as perfect as human beings have achieved. Consider these stats : the last three
versions of the program — each 420,000 lines long-had just one error each. The last 11
versions of this software had a total of 17 errors. Ten years ago the shuttle group was
considered world-class. Since then, it has cut its own error rate by 90%.

NASA Space Shutttle project lasted from April 12, 1981 to July 21, 2011

1Az A b
0 O¥a \'1\0 212321 41

