
3/2/21 1

Fault Tolerant Computing
CS 530

Software Reliability Growth

Yashwant K. Malaiya
Colorado State University

3/2/21 2

Software Reliability Growth: Outline

• Testing approaches
• Operational Profile
• Software Reliability Growth Models

§ Exponential
§ Logarithmic

• Model evaluation: error, bias
• Model usage

§ Static estimation before testing
§ Making projections using test data

3/2/21 3

Software Reliability Growth Models

• This field is the classical part of “Software
Reliability Engineering” (SRE).

• During testing and debugging, the number of
remaining bugs reduces, and the bug finding rate
tends to drop.

• When to Stop Testing Problem: Given a history of
bug finding rate, when will it drop below an
acceptable limit, so that the software can be
released.

3/2/21 4

Test methodologies

•Static (review, inspection) vs. dynamic (execution)
•Test views

•Black-box (functional): input/output description
•White box (structural): implementation used
•Combination: white after black

•Test generation
•Partitioning the input domain

•Random/Antirandom/Deterministic
•Usual assumption: the test method does not change during
testing.

•In practice testing approach does change, which causes some
statistical fluctuations.

3/2/21 5

Input mix: Test Profile

• The inputs to a system can represent different
types of operations. The input mix called “Profile”
can impact effectiveness of testing.

• For example a Search program can be tested for
text data, numerical data, data already sorted etc.
If most testing is done using numerical data, more
bugs related to text data may remain unfound.

3/2/21 6

Input Mix: Testing “Profile”
• The ideal Profile (input mix) will depend on the objective

§ A. Find bugs fast? or
§ B. Estimate operational failure intensity?

A. Best mix for efficient bug finding (Li & Malaiya’94)
§ Quick & limited testing: Use operational profile (next slide)
§ High reliability: Probe input space evenly

• Operational profile will not execute rare and special cases, the
main cause of failures in highly reliable systems.

§ In general: Use combination
B. For acceptance testing: Need Operational profile

N. Li and Y.K. Malaiya, On Input Profile Selection for Software Testing, Proc. Int. Symp.
Software Reliability Engineering, Nov. 1994, pp. 196-205.

H. Hecht, P. Crane, Rare conditions and their effect on software failures, Proc. Annual
Reliability and Maintainability Symposium, 1994, pp. 334-337

http://www.cs.colostate.edu/~malaiya/p/li94profile.pdf

3/2/21 7

Operational Profile
• Profile: set of disjoint actions, operations that a

program may perform, and their probabilities of
occurrence.

• Operational profile: probabilities that occur in
actual operation
§ Begin-to-end operations & their probabilities
§ Markov: states & transition probabilities

• There may be multiple operational profiles.
• Accurate operational profile determination may

not be needed.

3/2/21 8

Operational Profile Example

• Assume PhoneFollower software that handles incoming calls to a
PABX unit.

• Incoming call types & other operations (total 7 types) are monitored to
estimate get their probabilities (next slide).

• 74% of the calls were voice calls. In order to achieve better resolution,
they were further divided into 5 type (next slide).

• The resulting Operational profile would have 5+6 = types of
operations, with probabilities ranging from 0.18 (18%) to 0.000001.

Note that the code needed for
Failure recovery is only rarely
executed.

3/2/21 9

Operational Profile Example
• “Phone follower” call types (Musa)

A Voice call 0.74
B FAX call 0.15
C New number entry 0.10
D Data base audit 0.009
E Add subscriber 0.0005
F Delete subscriber 0.000499
G Failure recovery 0.000001

A1 Voice call, no pager, answer 0.18

A2 Voice call, no pager, no
answer

0.17

A3 Voice call, pager, voice
answer

0.17

A4 Voice call, pager, answer on
page

0.12

A5 Voice call, pager, no answer
on page

0.10

3/2/21 10

Modeling Reliability Growth
• Testing cost can be 60% or more
• Careful planning to release by target date
• Decision making using a software reliability

growth model (SRGM). Obtained using
§ Analytically using assumptions, or and
§ Based on experimental observation

• A model describes a real process approximately
• Ideally should have good predictive capability and

a reasonable interpretation

3/2/21 11

Exponential Reliability Growth Model
• Most common and easiest to explain model. From 1970s
• Notation:

§ Total expected faults detected by time t: µ(t)
§ Failure intensity: fault detection rate l(t)
§ Undetected defects present at time t: N(t)

• By definition, l(t) is derivative of µ(t). Hence

)(

)()(

tN
dt
d

t
dt
dt

-=

= µl

Since faults found are no
longer undetected

3/2/21 12

Exponential SRGM Derivation Pt 1
§ Notation

• Ts: average single execution time
• ks: expected fraction of faults found during Ts

• TL: time to execute each program instruction once

ratio exposurefault is K where

)()()(

)()(

1

s

L
s

L

ss

T
Tk

tNtN
T
K

dt
tdN

tNkT
dt
tdN

=

==-

=-

b
Notation: Here we replace
Ks and Ts by more
convenient K and TL.

Key
assumption

3/2/21 13

Exponential SRGM Derivation Pt 2
• We get

• For t®¥, total bo=N(0) faults would be eventually
detected. A “finite-faults-model”.

• Assumes no new defects are generated during
debugging.

• Proposed by Jelinski-Muranda ‘71, Shooman ‘71,
Goel-Okumoto ‘79 and Musa ‘75-’80. also called
Basic.

e)N(= N(t) t- 1b0

)e - (1 = (t) t-
o

1bbµ e = (t) t-
1o

1bbbl
The 2 equations
contain the same
information.

3/2/21 14

Exponential SRGM

0

0.001

0.002

0.003

0.004

0.005

0.006

0 20000 40000 60000 80000 100000

time (sec.)

la
m

bd
a(

t)

0

20

40

60
80

100

120

140

160

0 20000 40000 60000 80000 100000

time (sec.)

m
u(

t)

β0

The plots show l(t) and µ(t) for b0=142 and b1=3.5×10-5.
Note that µ(t) asymptotically approaches 142.

3/2/21 15

A Basic SRGM (cont.)
• Note that parameter b1 is given by:

• S: source instructions,
• Q: number of object instructions per source instruction

typically between 2.5 to 6 (see page 7-13 of Software
rteliability Handbook, sec 7)

• r: object instruction execution rate of the computer
• K: fault-exposure ratio, range 1×10-7 to 10×10-7, (t is in

CPU seconds). Assumed constant here*.
• Q, r and K should be relatively easy to estimate.

)
r

Q(S

K
T
K =

L
1 1..

=b

*Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, "An examination of fault exposure ratio,“
in IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1087-1094, Nov 1993

http://www.cs.colostate.edu/~cs530/rh/section7.pdf

3/2/21 16

SRGM : “Logarithmic Poisson”
• Many SRGMs have been proposed.
• Another model Logarithmic Poisson model, by Musa-

Okumoto, has been found to have a good predictive
capability

• Applicable as long as µ(t) < N(0). Practically always
satisfied. Term infinite-faults-model misleading.

• Parameters bo and b1 don’t have a simple interpretation.
An interpretation has been given by Malaiya and Denton (What Do the Software
Reliability Growth Model Parameters Represent?).

t) + (1 = (t) 1o bbµ ln
t + 1

 = (t)
1

1o

b
bb

l

http://www.cs.colostate.edu/~malaiya/p/denton97.pdf

3/2/21 17

Comparing Models
• Goodness of fit: may be misleading
• Predictive capability:

§ Data points: (li,ti), i =1 to n
§ Total defects found: D, estimated at i: Di

• We used many datasets from diverse
projects for comparing different models.

å

å
-

=

-

=

-
=

-
=

1

1

1

1

n
1AB:bias Average

||
n
1AE :error Average

n

i

i

n

i

i

D
DD
D
DD

3/2/21 18

Comparing models

• Next slide shows the result of a comparison using test data
from a number of diverse sources.

• The Logarithmic Poisson model is most accurate.
• The Exponential model is moderately accurate.
• Both the Logarithmic Poisson and the Exponential models

tend to underestimate the number of defects that will
eventually be found.

• Inverse Polynomial, Power and S-shaped models are not
discussed here, you can find them in the literature.

3/2/21 19

Bias in SRGMs

-40

-30

-20

-10

0

10

20

30

40

Log Inv Poly Expo Power S-shaped

Average Error
Average Bias

•Malaiya, Karunanithi, Verma (’90)

http://citeseer.ist.psu.edu/559323.html

3/2/21 20

Using an SRGM

• An SRGM can be used in two ways
§ For preliminary planning, even before testing

begins (provided you can estimate the
parameters)

§ During testing: You can fit the available test
data to make projections.

• We’ll see examples of both next.

3/2/21 21

SRGM: Use for Preliminary Planning
• Example:

§ initial defect density estimated 25 defects/KLOC
§ 10,000 lines of C code
§ computer 70 million object instructions per second
§ fault exposure ratio K estimated to be 4×10-7

§ Task: Estimate the testing time needed for defect density
2.5/KLOC

• Procedure:
§ Find b0, b1

§ Find testing time t1

3/2/21 22

SRGM: Preliminary Planning (cont.)
• From exponential model

defects, 250 = 1025 =)N(= o ´0b

sec

1..

 per 10 11.2 =
10 70

 2.5 10,000

10 4.0 =
)

r
1Q(S

K =

4-

6

-7

1

´
´

´´

´
b

3/2/21 23

SRGM: Preliminary Planning (cont.)
• Reliability at release depends on

).102.11exp(1
4 t =

10 25
10 2.5 =

N(O)
)tN(1 -´-

´
´

)(.secln time CPU 2056 =
10 11.2

(0.1) - = t 4-1 ´

secfailures/ 0.028 =
e 10 11.2 250 =)t(t10 -11.2-4

1
1

-4´´´l

answer

Note N(t1) is the total number of
defects at the end of testing,
which is defect density× size
=2.5/KLOC × 10 KLOC

3/2/21 24

SRGM: Preliminary Planning (cont.)

• For the same environment, product b1×S is
constant, since b1 is inversely proportional to S.
For example,
§ If for a prior 5 KLOC project b1 was 2×10-3 per sec.
§ Then for a new 15 KLOC project, b1 can be estimated as

2×10-3/3 = 0.66×10-3 per sec.
• Value of fault exposure ratio (K) may depend on

initial defect density and testing strategy (Li,
Malaiya ’93).

3/2/21 25

SRGM: During Testing
• Collect and pre-process data:

§ To extract the long-term trend, data needs to be smoothed
§ Grouped data: test duration intervals, average failure intensity in

each interval.
• Select a model and determine parameters:

§ past experience with projects using the same process
§ exponential and logarithmic models often good choices
§ model that fits early data well, may not have the best predictive

capability
§ parameters estimated using least square or maximum likelihood
§ parameter values used when stable and reasonable

3/2/21 26

SRGM: During Testing (cont.)
• Compute how much more testing is needed:

§ fitted model to project additional testing needed
• desired failure intensity
• estimated defect density

§ recalibrating a model can improve projection accuracy
§ Interval estimates can be obtained using statistical

methods.

3/2/21 27

Example: SRGM with Test Data

CPU Hours Failures
1 27
2 16
3 11
4 10
5 11
6 7
7 2
8 5
9 3
10 1
11 4
12 7

0

5

10

15

20

25

30

0 5 10 15
CPU Hours

fa
ilu

re
 in

te
ns

ity
 p

er
 h

ou
r

•Target failure intensity 1/hour (2.78×10-4 per sec.)

3/2/21 28

Example: SRGM with Test Data (cont.)

• Fitting we get
bo = 101.47 and b1 = 5.22 × 10-5

• stopping time tf is then given by:

• yielding tf = 56, 473 sec., i.e. 15.69 hours

e10 5.22 101.47 = 10 2.78 t 10 -5.22-5-4 f
-5´´´´´

Note: The exact values of the parameter values estimated depend
on the numerical methods used.

3/2/21 29

Example: SRGM with Test Data (cont.)
Figure 1: Using an SRGM

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 5 10 15 20

Hours

fa
ilu

re
 in

te
ns

ity

measured values

Fitted
model

Failure
intensity
target

3/2/21 30

Example: SRGM with Test Data (cont.)
• Accuracy of projection:

§ Experience with Exponential model suggests
§ estimated bo tends to be lower than the final value
§ estimated b1 tends to be higher
§ true value of tf should be higher. Hence 15.69 hours

should be used as a lower estimate.
• Problems:

§ test strategy changed: spike in failure intensity
• smoothing

§ software under test evolving - continuing additions
• Drop or adjust early data points

3/2/21 31

Test Compression factor

• b1 measures test effectiveness,
§ higher during testing for debugging,
§ lower during operation.
§ Test compression factor = b1t / b1op
§ Similar to accelerated testing for hardware

• Needs to be estimated empirically
§ Musa’s estimates: 8-20 for systems with 103 to 109

states.
§ Needs further research

• CPU time vs calendar time

3/2/21 32

For further reading
• Software Reliability Assurance Handbook by Lakey and Neufelder
• Y.K. Malaiya, "Software Reliability Management," Encyclopedia of

Library and Information Sciences, Taylor and Francis, Editor: S. Lee,
Third Edition, 1: 1, 4901 — 4912, February 2010.

http://www.cs.colostate.edu/~cs530/rh/index.html
http://www.cs.colostate.edu/~malaiya/p/malaiya.elis.2010

