

Colorado State University

Test Coverage Measures

- Statement or Block coverage
- Branch or decision coverage
- P-use coverage: p-use pair: variable defined/modified use as predicate
- C-use coverage: similar -use for computation
- Subsumption hierarchy:
 - Covering *all branches* cover *all statements*
 - Covering *all p-uses* cover *all branches*

Modeling : Defects, Time, & Coverage

Coverage Based Defect Estimation

- Coverage is an objective measure of testing
 - Directly related to test effectiveness
 - Independent of processor speed and testing efficiency
- Lower defect density requires higher coverage to find more faults
- Once we start finding faults, expect coverage vs. defect growth to be linear

Logarithmic-Exponential Coverage Model

• Hypothesis 1: defect coverage growth follows logarithmic model

$$C^{0}(t) = \frac{\beta_{0}^{0}}{N^{0}} \ln(1 + \beta_{1}^{0}t), \quad C^{0}(t) \le 1$$

• Hypothesis 2: test coverage growth follows logarithmic model

$$C^{i}(t) = \frac{\beta_{0}^{i}}{N^{i}} \ln(1 + \beta_{1}^{i}t), \quad C^{i}(t) \le 1$$

Log-Expo Coverage Model (2)

- Eliminating t and rearranging, $C^{0} = a_{0}^{i} \ln[1 + a_{1}^{i}(\exp(a_{2}^{i}C^{i}) - 1)], \quad C^{0} \leq 1$ where C^{0} : defect coverage, C^{i} : test coverage $a_{0}^{i}, a_{1}^{i}, a_{2}^{i}$: parameters; *i*: branch cov, p - use cov etc.
- For "large" Ci, we can approximate

$$C^0 = -A^i + B^i C^i$$

Coverage Model, Estimated Defects

- Only applicable after the knee
- Assumptions : Stable Software

- Based on interpretation through logarithmic model
- Location of knee based on initial defect density
- Lower defect densities cause knee to occur at higher coverage
- Parameter estimation : Malaiya and Denton (HASE '98)

Data Sets Used Vouk and Pasquini

- Vouk data
 - from N version programming project to create a flight controller
 - Three data sets, 6 to 9 errors each
- Pasquini data
 - Data from European Space Agency
 - C Program with 100,000 source lines
 - 29 of 33 known faults uncovered

Defects vs. Branch Coverage

Defects vs. P-Use Coverage

Estimation of Defect Density

- Estimated defects at 95% coverage, for Pasquini data (assume 5% *dead code*)
- 28 faults found, and 33 known to exist

Measure	Coverage	Expected
	Achieved	Defects
Block	82%	36
Branch	70%	44
P-uses	67%	48

Defects vs. P-Use Coverage

Data Set: Vouk 3

Coverage Based Estimation

Data Set: Pasquini et al

Current Methods

- Development process based models allow for *a priori* estimates
 - Not as accurate as methods based on test data
- Sampling methods often assume faults found as easy to find as faults not found
 - Underestimates faults
- Exponential model
 - Assume applicability of exponential model
 - We present results of a comparison

The Exponential Model

Related articles

- Frankl & Iakouneno, Proc. SIGSOFT '98
 - 8 versons of European Space Agency program, 10K LOC, Single fault reinsertion
- Williams, Mercer, Mucha, Kapur, 2001
 - "Code coverage, what does it mean in terms of quality?,"
 - analysis from first principles
- Peter G Bishop, SAFECOMP 2002
 - A related model, unreachable code

Related articles

- Mockus, A.; Nagappan, N.; Dinh-Trong, T.T., "Test coverage and post-verification defects: A multiple case study," Empirical Software Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium on , vol., no., pp.291,301, 15-16 Oct. 2009
- Avaya lab data
- *"The test effort increases exponentially with test coverage, but the reduction in field problems increases linearly with test coverage."*

Observations and Conclusions

- Estimates with new method are very stable
 - Visual confirmation of earlier projections
- Which coverage measure to use?
 - Stricter measure will yield closer estimate
- Some code may be dead or unreachable
 - Found with compile or link time tools
 - May need to be taken into account

Voak's Observation

He thought that a model is not possible because he collected data for programs

- That were functionally identical (for redundancy)
- but independent implemented
- Problem: defects found with the same coverage did not match!
- He gave up, but gave us the data.

Voak's Observation

He thought that a model is not possible because he collected data for programs

- That were functionally identical (for redundancy) but independent implemented
- Problem: defects found with the same coverage did not match!
- Reason: Different implementations may result in different testability.

Research Ideas

Some research that I would like someone to do

- Compare alternative models using data
 - Collect data and models
- Modeling software evolution
- Connect detectability profile to our model
- Compare mutation testing and fault coverage
 - How representative are mutations
- Using fault coverage for vulnerability detection
- Applicability of fault coverage for high or very low defect densities
- Using fault coverage with deterministic testing: limitations

